lammps/lib/linalg/dlange.f

212 lines
5.7 KiB
Fortran

*> \brief \b DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLANGE + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
*
* .. Scalar Arguments ..
* CHARACTER NORM
* INTEGER LDA, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLANGE returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> real matrix A.
*> \endverbatim
*>
*> \return DLANGE
*> \verbatim
*>
*> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in DLANGE as described
*> above.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0. When M = 0,
*> DLANGE is set to zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0. When N = 0,
*> DLANGE is set to zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(M,1).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
*> referenced.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup doubleGEauxiliary
*
* =====================================================================
DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER LDA, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( MIN( M, N ).EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
DO 20 J = 1, N
DO 10 I = 1, M
TEMP = ABS( A( I, J ) )
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
10 CONTINUE
20 CONTINUE
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
DO 40 J = 1, N
SUM = ZERO
DO 30 I = 1, M
SUM = SUM + ABS( A( I, J ) )
30 CONTINUE
IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
40 CONTINUE
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
DO 50 I = 1, M
WORK( I ) = ZERO
50 CONTINUE
DO 70 J = 1, N
DO 60 I = 1, M
WORK( I ) = WORK( I ) + ABS( A( I, J ) )
60 CONTINUE
70 CONTINUE
VALUE = ZERO
DO 80 I = 1, M
TEMP = WORK( I )
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
80 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
DO 90 J = 1, N
CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
90 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
DLANGE = VALUE
RETURN
*
* End of DLANGE
*
END