forked from lijiext/lammps
408 lines
13 KiB
Fortran
408 lines
13 KiB
Fortran
*> \brief \b DLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAED7 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed7.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed7.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed7.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
|
|
* LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
|
|
* PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
|
|
* $ QSIZ, TLVLS
|
|
* DOUBLE PRECISION RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
|
|
* $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
|
|
* DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
|
|
* $ QSTORE( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAED7 computes the updated eigensystem of a diagonal
|
|
*> matrix after modification by a rank-one symmetric matrix. This
|
|
*> routine is used only for the eigenproblem which requires all
|
|
*> eigenvalues and optionally eigenvectors of a dense symmetric matrix
|
|
*> that has been reduced to tridiagonal form. DLAED1 handles
|
|
*> the case in which all eigenvalues and eigenvectors of a symmetric
|
|
*> tridiagonal matrix are desired.
|
|
*>
|
|
*> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
|
|
*>
|
|
*> where Z = Q**Tu, u is a vector of length N with ones in the
|
|
*> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
|
|
*>
|
|
*> The eigenvectors of the original matrix are stored in Q, and the
|
|
*> eigenvalues are in D. The algorithm consists of three stages:
|
|
*>
|
|
*> The first stage consists of deflating the size of the problem
|
|
*> when there are multiple eigenvalues or if there is a zero in
|
|
*> the Z vector. For each such occurence the dimension of the
|
|
*> secular equation problem is reduced by one. This stage is
|
|
*> performed by the routine DLAED8.
|
|
*>
|
|
*> The second stage consists of calculating the updated
|
|
*> eigenvalues. This is done by finding the roots of the secular
|
|
*> equation via the routine DLAED4 (as called by DLAED9).
|
|
*> This routine also calculates the eigenvectors of the current
|
|
*> problem.
|
|
*>
|
|
*> The final stage consists of computing the updated eigenvectors
|
|
*> directly using the updated eigenvalues. The eigenvectors for
|
|
*> the current problem are multiplied with the eigenvectors from
|
|
*> the overall problem.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ICOMPQ
|
|
*> \verbatim
|
|
*> ICOMPQ is INTEGER
|
|
*> = 0: Compute eigenvalues only.
|
|
*> = 1: Compute eigenvectors of original dense symmetric matrix
|
|
*> also. On entry, Q contains the orthogonal matrix used
|
|
*> to reduce the original matrix to tridiagonal form.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QSIZ
|
|
*> \verbatim
|
|
*> QSIZ is INTEGER
|
|
*> The dimension of the orthogonal matrix used to reduce
|
|
*> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TLVLS
|
|
*> \verbatim
|
|
*> TLVLS is INTEGER
|
|
*> The total number of merging levels in the overall divide and
|
|
*> conquer tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CURLVL
|
|
*> \verbatim
|
|
*> CURLVL is INTEGER
|
|
*> The current level in the overall merge routine,
|
|
*> 0 <= CURLVL <= TLVLS.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CURPBM
|
|
*> \verbatim
|
|
*> CURPBM is INTEGER
|
|
*> The current problem in the current level in the overall
|
|
*> merge routine (counting from upper left to lower right).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, the eigenvalues of the rank-1-perturbed matrix.
|
|
*> On exit, the eigenvalues of the repaired matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
|
|
*> On entry, the eigenvectors of the rank-1-perturbed matrix.
|
|
*> On exit, the eigenvectors of the repaired tridiagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INDXQ
|
|
*> \verbatim
|
|
*> INDXQ is INTEGER array, dimension (N)
|
|
*> The permutation which will reintegrate the subproblem just
|
|
*> solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
|
|
*> will be in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RHO
|
|
*> \verbatim
|
|
*> RHO is DOUBLE PRECISION
|
|
*> The subdiagonal element used to create the rank-1
|
|
*> modification.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CUTPNT
|
|
*> \verbatim
|
|
*> CUTPNT is INTEGER
|
|
*> Contains the location of the last eigenvalue in the leading
|
|
*> sub-matrix. min(1,N) <= CUTPNT <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] QSTORE
|
|
*> \verbatim
|
|
*> QSTORE is DOUBLE PRECISION array, dimension (N**2+1)
|
|
*> Stores eigenvectors of submatrices encountered during
|
|
*> divide and conquer, packed together. QPTR points to
|
|
*> beginning of the submatrices.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] QPTR
|
|
*> \verbatim
|
|
*> QPTR is INTEGER array, dimension (N+2)
|
|
*> List of indices pointing to beginning of submatrices stored
|
|
*> in QSTORE. The submatrices are numbered starting at the
|
|
*> bottom left of the divide and conquer tree, from left to
|
|
*> right and bottom to top.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PRMPTR
|
|
*> \verbatim
|
|
*> PRMPTR is INTEGER array, dimension (N lg N)
|
|
*> Contains a list of pointers which indicate where in PERM a
|
|
*> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
|
|
*> indicates the size of the permutation and also the size of
|
|
*> the full, non-deflated problem.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PERM
|
|
*> \verbatim
|
|
*> PERM is INTEGER array, dimension (N lg N)
|
|
*> Contains the permutations (from deflation and sorting) to be
|
|
*> applied to each eigenblock.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] GIVPTR
|
|
*> \verbatim
|
|
*> GIVPTR is INTEGER array, dimension (N lg N)
|
|
*> Contains a list of pointers which indicate where in GIVCOL a
|
|
*> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
|
|
*> indicates the number of Givens rotations.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] GIVCOL
|
|
*> \verbatim
|
|
*> GIVCOL is INTEGER array, dimension (2, N lg N)
|
|
*> Each pair of numbers indicates a pair of columns to take place
|
|
*> in a Givens rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] GIVNUM
|
|
*> \verbatim
|
|
*> GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
|
|
*> Each number indicates the S value to be used in the
|
|
*> corresponding Givens rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (4*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = 1, an eigenvalue did not converge
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date September 2012
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Jeff Rutter, Computer Science Division, University of California
|
|
*> at Berkeley, USA
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
|
|
$ LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
|
|
$ PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* September 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
|
|
$ QSIZ, TLVLS
|
|
DOUBLE PRECISION RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
|
|
$ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
|
|
DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
|
|
$ QSTORE( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
|
|
$ IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
|
|
INFO = -12
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLAED7', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* The following values are for bookkeeping purposes only. They are
|
|
* integer pointers which indicate the portion of the workspace
|
|
* used by a particular array in DLAED8 and DLAED9.
|
|
*
|
|
IF( ICOMPQ.EQ.1 ) THEN
|
|
LDQ2 = QSIZ
|
|
ELSE
|
|
LDQ2 = N
|
|
END IF
|
|
*
|
|
IZ = 1
|
|
IDLMDA = IZ + N
|
|
IW = IDLMDA + N
|
|
IQ2 = IW + N
|
|
IS = IQ2 + N*LDQ2
|
|
*
|
|
INDX = 1
|
|
INDXC = INDX + N
|
|
COLTYP = INDXC + N
|
|
INDXP = COLTYP + N
|
|
*
|
|
* Form the z-vector which consists of the last row of Q_1 and the
|
|
* first row of Q_2.
|
|
*
|
|
PTR = 1 + 2**TLVLS
|
|
DO 10 I = 1, CURLVL - 1
|
|
PTR = PTR + 2**( TLVLS-I )
|
|
10 CONTINUE
|
|
CURR = PTR + CURPBM
|
|
CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
|
|
$ GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
|
|
$ WORK( IZ+N ), INFO )
|
|
*
|
|
* When solving the final problem, we no longer need the stored data,
|
|
* so we will overwrite the data from this level onto the previously
|
|
* used storage space.
|
|
*
|
|
IF( CURLVL.EQ.TLVLS ) THEN
|
|
QPTR( CURR ) = 1
|
|
PRMPTR( CURR ) = 1
|
|
GIVPTR( CURR ) = 1
|
|
END IF
|
|
*
|
|
* Sort and Deflate eigenvalues.
|
|
*
|
|
CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
|
|
$ WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
|
|
$ WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
|
|
$ GIVCOL( 1, GIVPTR( CURR ) ),
|
|
$ GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
|
|
$ IWORK( INDX ), INFO )
|
|
PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
|
|
GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
|
|
*
|
|
* Solve Secular Equation.
|
|
*
|
|
IF( K.NE.0 ) THEN
|
|
CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
|
|
$ WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 30
|
|
IF( ICOMPQ.EQ.1 ) THEN
|
|
CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
|
|
$ QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
|
|
END IF
|
|
QPTR( CURR+1 ) = QPTR( CURR ) + K**2
|
|
*
|
|
* Prepare the INDXQ sorting permutation.
|
|
*
|
|
N1 = K
|
|
N2 = N - K
|
|
CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
|
|
ELSE
|
|
QPTR( CURR+1 ) = QPTR( CURR )
|
|
DO 20 I = 1, N
|
|
INDXQ( I ) = I
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
30 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of DLAED7
|
|
*
|
|
END
|