lammps/lib/gpu/pair_gpu_device.cpp

278 lines
9.4 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mike Brown (ORNL), brownw@ornl.gov
------------------------------------------------------------------------- */
#include "pair_gpu_device.h"
#include "pair_gpu_precision.h"
#include <map>
#include <math.h>
#define PairGPUDeviceT PairGPUDevice<numtyp, acctyp>
template <class numtyp, class acctyp>
PairGPUDeviceT::PairGPUDevice() : _init_count(0), _device_init(false),
_gpu_mode(GPU_FORCE), _first_device(0),
_last_device(0) {
}
template <class numtyp, class acctyp>
PairGPUDeviceT::~PairGPUDevice() {
clear_device();
}
template <class numtyp, class acctyp>
bool PairGPUDeviceT::init_device(MPI_Comm world, MPI_Comm replica,
const int first_gpu, const int last_gpu,
const int gpu_mode, const double p_split,
const int nthreads) {
_nthreads=nthreads;
if (_device_init)
return true;
_device_init=true;
_comm_world=world;
_comm_replica=replica;
_first_device=first_gpu;
_last_device=last_gpu;
_gpu_mode=gpu_mode;
_particle_split=p_split;
// Get the rank/size within the world
MPI_Comm_rank(_comm_world,&_world_me);
MPI_Comm_size(_comm_world,&_world_size);
// Get the rank/size within the replica
MPI_Comm_rank(_comm_replica,&_replica_me);
MPI_Comm_size(_comm_replica,&_replica_size);
// Get the names of all nodes
int name_length;
char node_name[MPI_MAX_PROCESSOR_NAME];
char node_names[MPI_MAX_PROCESSOR_NAME*_world_size];
MPI_Get_processor_name(node_name,&name_length);
MPI_Allgather(&node_name,MPI_MAX_PROCESSOR_NAME,MPI_CHAR,&node_names,
MPI_MAX_PROCESSOR_NAME,MPI_CHAR,_comm_world);
std::string node_string=std::string(node_name);
// Get the number of procs per node
std::map<std::string,int> name_map;
std::map<std::string,int>::iterator np;
for (int i=0; i<_world_size; i++) {
std::string i_string=std::string(&node_names[i*MPI_MAX_PROCESSOR_NAME]);
np=name_map.find(i_string);
if (np==name_map.end())
name_map[i_string]=1;
else
np->second++;
}
int procs_per_node=name_map.begin()->second;
// Assign a unique id to each node
int split_num=0, split_id=0;
for (np=name_map.begin(); np!=name_map.end(); ++np) {
if (np->first==node_string)
split_id=split_num;
split_num++;
}
// Set up a per node communicator and find rank within
MPI_Comm node_comm;
MPI_Comm_split(_comm_world, split_id, 0, &node_comm);
int node_rank;
MPI_Comm_rank(node_comm,&node_rank);
// set the device ID
_procs_per_gpu=static_cast<int>(ceil(static_cast<double>(procs_per_node)/
(last_gpu-first_gpu+1)));
int my_gpu=node_rank/_procs_per_gpu;
// Set up a per device communicator
MPI_Comm_split(node_comm,my_gpu,0,&_comm_gpu);
MPI_Comm_rank(_comm_gpu,&_gpu_rank);
gpu=new UCL_Device();
if (my_gpu>=gpu->num_devices())
return false;
gpu->set(my_gpu);
return true;
}
template <class numtyp, class acctyp>
bool PairGPUDeviceT::init(const bool charge, const bool rot, const int nlocal,
const int host_nlocal, const int nall,
const int maxspecial, const bool gpu_nbor,
const int gpu_host, const int max_nbors,
const double cell_size, const bool pre_cut) {
if (!_device_init)
return false;
if (_init_count==0) {
// Initialize atom and nbor data
int ef_nlocal=nlocal;
if (_particle_split<1.0 && _particle_split>0.0)
ef_nlocal=static_cast<int>(_particle_split*nlocal);
if (!atom.init(ef_nlocal,nall,charge,rot,*gpu,gpu_nbor,
gpu_nbor && maxspecial>0))
return false;
if (!nbor.init(ef_nlocal,host_nlocal,max_nbors,maxspecial,*gpu,gpu_nbor,
gpu_host,pre_cut))
return false;
nbor.cell_size(cell_size);
} else {
if (cell_size>nbor.cell_size())
nbor.cell_size(cell_size);
}
_init_count++;
return true;
}
template <class numtyp, class acctyp>
void PairGPUDeviceT::init_message(FILE *screen, const char *name,
const int first_gpu, const int last_gpu) {
#ifdef USE_OPENCL
std::string fs="";
#else
std::string fs=toa(gpu->free_gigabytes())+"/";
#endif
if (_replica_me == 0 && screen) {
fprintf(screen,"\n-------------------------------------");
fprintf(screen,"-------------------------------------\n");
fprintf(screen,"- Using GPGPU acceleration for %s:\n",name);
fprintf(screen,"- with %d procs per device.\n",_procs_per_gpu);
fprintf(screen,"-------------------------------------");
fprintf(screen,"-------------------------------------\n");
for (int i=first_gpu; i<=last_gpu; i++) {
std::string sname=gpu->name(i)+", "+toa(gpu->cores(i))+" cores, "+fs+
toa(gpu->gigabytes(i))+" GB, "+toa(gpu->clock_rate(i))+
" GHZ (";
if (sizeof(PRECISION)==4) {
if (sizeof(ACC_PRECISION)==4)
sname+="Single Precision)";
else
sname+="Mixed Precision)";
} else
sname+="Double Precision)";
fprintf(screen,"GPU %d: %s\n",i,sname.c_str());
}
fprintf(screen,"-------------------------------------");
fprintf(screen,"-------------------------------------\n\n");
}
}
template <class numtyp, class acctyp>
void PairGPUDeviceT::output_times(UCL_Timer &time_pair, const double avg_split,
const double max_bytes, FILE *screen) {
double single[5], times[5];
single[0]=atom.transfer_time();
single[1]=nbor.time_nbor.total_seconds();
single[2]=nbor.time_kernel.total_seconds();
single[3]=time_pair.total_seconds();
single[4]=atom.cast_time();
MPI_Reduce(single,times,5,MPI_DOUBLE,MPI_SUM,0,_comm_replica);
double my_max_bytes=max_bytes;
double mpi_max_bytes;
MPI_Reduce(&my_max_bytes,&mpi_max_bytes,1,MPI_DOUBLE,MPI_MAX,0,_comm_replica);
double max_mb=mpi_max_bytes/(1024.0*1024.0);
if (replica_me()==0)
if (screen && times[3]>0.0) {
fprintf(screen,"\n\n-------------------------------------");
fprintf(screen,"--------------------------------\n");
fprintf(screen," GPU Time Info (average): ");
fprintf(screen,"\n-------------------------------------");
fprintf(screen,"--------------------------------\n");
if (procs_per_gpu()==1) {
fprintf(screen,"Data Transfer: %.4f s.\n",times[0]/_replica_size);
fprintf(screen,"Data Cast/Pack: %.4f s.\n",times[4]/_replica_size);
fprintf(screen,"Neighbor copy: %.4f s.\n",times[1]/_replica_size);
if (nbor.gpu_nbor())
fprintf(screen,"Neighbor build: %.4f s.\n",times[2]/_replica_size);
else
fprintf(screen,"Neighbor unpack: %.4f s.\n",times[2]/_replica_size);
fprintf(screen,"Force calc: %.4f s.\n",times[3]/_replica_size);
}
fprintf(screen,"Average split: %.4f.\n",avg_split);
fprintf(screen,"Max Mem / Proc: %.2f MB.\n",max_mb);
fprintf(screen,"-------------------------------------");
fprintf(screen,"--------------------------------\n\n");
}
}
template <class numtyp, class acctyp>
void PairGPUDeviceT::clear() {
if (_init_count>0) {
_init_count--;
if (_init_count==0) {
atom.clear();
nbor.clear();
}
}
}
template <class numtyp, class acctyp>
void PairGPUDeviceT::clear_device() {
while (_init_count>0)
clear();
if (_device_init) {
delete gpu;
_device_init=false;
}
}
template <class numtyp, class acctyp>
double PairGPUDeviceT::host_memory_usage() const {
return atom.host_memory_usage()+
nbor.host_memory_usage()+4*sizeof(numtyp)+
sizeof(PairGPUDevice<numtyp,acctyp>);
}
template class PairGPUDevice<PRECISION,ACC_PRECISION>;
PairGPUDevice<PRECISION,ACC_PRECISION> pair_gpu_device;
bool lmp_init_device(MPI_Comm world, MPI_Comm replica, const int first_gpu,
const int last_gpu, const int gpu_mode,
const double particle_split, const int nthreads) {
return pair_gpu_device.init_device(world,replica,first_gpu,last_gpu,gpu_mode,
particle_split,nthreads);
}
void lmp_clear_device() {
pair_gpu_device.clear_device();
}
double lmp_gpu_forces(double **f, double **tor, double *eatom,
double **vatom, double *virial, double &ecoul) {
if (pair_gpu_device.init_count()) {
pair_gpu_device.stop_host_timer();
pair_gpu_device.gpu->sync();
double evdw=pair_gpu_device.atom.energy_virial(eatom,vatom,virial,ecoul);
pair_gpu_device.atom.get_answers(f,tor);
return evdw;
}
return 0.0;
}