forked from lijiext/lammps
577 lines
15 KiB
Fortran
577 lines
15 KiB
Fortran
*> \brief \b ZSTEQR
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZSTEQR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsteqr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsteqr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsteqr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER COMPZ
|
|
* INTEGER INFO, LDZ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E( * ), WORK( * )
|
|
* COMPLEX*16 Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a
|
|
*> symmetric tridiagonal matrix using the implicit QL or QR method.
|
|
*> The eigenvectors of a full or band complex Hermitian matrix can also
|
|
*> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
|
|
*> matrix to tridiagonal form.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] COMPZ
|
|
*> \verbatim
|
|
*> COMPZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only.
|
|
*> = 'V': Compute eigenvalues and eigenvectors of the original
|
|
*> Hermitian matrix. On entry, Z must contain the
|
|
*> unitary matrix used to reduce the original matrix
|
|
*> to tridiagonal form.
|
|
*> = 'I': Compute eigenvalues and eigenvectors of the
|
|
*> tridiagonal matrix. Z is initialized to the identity
|
|
*> matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, the diagonal elements of the tridiagonal matrix.
|
|
*> On exit, if INFO = 0, the eigenvalues in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
|
|
*> matrix.
|
|
*> On exit, E has been destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX*16 array, dimension (LDZ, N)
|
|
*> On entry, if COMPZ = 'V', then Z contains the unitary
|
|
*> matrix used in the reduction to tridiagonal form.
|
|
*> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
|
|
*> orthonormal eigenvectors of the original Hermitian matrix,
|
|
*> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
|
|
*> of the symmetric tridiagonal matrix.
|
|
*> If COMPZ = 'N', then Z is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
|
*> eigenvectors are desired, then LDZ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2))
|
|
*> If COMPZ = 'N', then WORK is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: the algorithm has failed to find all the eigenvalues in
|
|
*> a total of 30*N iterations; if INFO = i, then i
|
|
*> elements of E have not converged to zero; on exit, D
|
|
*> and E contain the elements of a symmetric tridiagonal
|
|
*> matrix which is unitarily similar to the original
|
|
*> matrix.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER COMPZ
|
|
INTEGER INFO, LDZ, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E( * ), WORK( * )
|
|
COMPLEX*16 Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TWO, THREE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
|
|
$ THREE = 3.0D0 )
|
|
COMPLEX*16 CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
|
|
$ CONE = ( 1.0D0, 0.0D0 ) )
|
|
INTEGER MAXIT
|
|
PARAMETER ( MAXIT = 30 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
|
|
$ LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
|
|
$ NM1, NMAXIT
|
|
DOUBLE PRECISION ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
|
|
$ S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DLAMCH, DLANST, DLAPY2
|
|
EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASRT, XERBLA,
|
|
$ ZLASET, ZLASR, ZSWAP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, SIGN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( LSAME( COMPZ, 'N' ) ) THEN
|
|
ICOMPZ = 0
|
|
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
|
|
ICOMPZ = 1
|
|
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
|
|
ICOMPZ = 2
|
|
ELSE
|
|
ICOMPZ = -1
|
|
END IF
|
|
IF( ICOMPZ.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
|
|
$ N ) ) ) THEN
|
|
INFO = -6
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZSTEQR', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
IF( ICOMPZ.EQ.2 )
|
|
$ Z( 1, 1 ) = CONE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Determine the unit roundoff and over/underflow thresholds.
|
|
*
|
|
EPS = DLAMCH( 'E' )
|
|
EPS2 = EPS**2
|
|
SAFMIN = DLAMCH( 'S' )
|
|
SAFMAX = ONE / SAFMIN
|
|
SSFMAX = SQRT( SAFMAX ) / THREE
|
|
SSFMIN = SQRT( SAFMIN ) / EPS2
|
|
*
|
|
* Compute the eigenvalues and eigenvectors of the tridiagonal
|
|
* matrix.
|
|
*
|
|
IF( ICOMPZ.EQ.2 )
|
|
$ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
|
|
*
|
|
NMAXIT = N*MAXIT
|
|
JTOT = 0
|
|
*
|
|
* Determine where the matrix splits and choose QL or QR iteration
|
|
* for each block, according to whether top or bottom diagonal
|
|
* element is smaller.
|
|
*
|
|
L1 = 1
|
|
NM1 = N - 1
|
|
*
|
|
10 CONTINUE
|
|
IF( L1.GT.N )
|
|
$ GO TO 160
|
|
IF( L1.GT.1 )
|
|
$ E( L1-1 ) = ZERO
|
|
IF( L1.LE.NM1 ) THEN
|
|
DO 20 M = L1, NM1
|
|
TST = ABS( E( M ) )
|
|
IF( TST.EQ.ZERO )
|
|
$ GO TO 30
|
|
IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
|
|
$ 1 ) ) ) )*EPS ) THEN
|
|
E( M ) = ZERO
|
|
GO TO 30
|
|
END IF
|
|
20 CONTINUE
|
|
END IF
|
|
M = N
|
|
*
|
|
30 CONTINUE
|
|
L = L1
|
|
LSV = L
|
|
LEND = M
|
|
LENDSV = LEND
|
|
L1 = M + 1
|
|
IF( LEND.EQ.L )
|
|
$ GO TO 10
|
|
*
|
|
* Scale submatrix in rows and columns L to LEND
|
|
*
|
|
ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) )
|
|
ISCALE = 0
|
|
IF( ANORM.EQ.ZERO )
|
|
$ GO TO 10
|
|
IF( ANORM.GT.SSFMAX ) THEN
|
|
ISCALE = 1
|
|
CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
|
|
$ INFO )
|
|
CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
|
|
$ INFO )
|
|
ELSE IF( ANORM.LT.SSFMIN ) THEN
|
|
ISCALE = 2
|
|
CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
|
|
$ INFO )
|
|
CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
|
|
$ INFO )
|
|
END IF
|
|
*
|
|
* Choose between QL and QR iteration
|
|
*
|
|
IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
|
|
LEND = LSV
|
|
L = LENDSV
|
|
END IF
|
|
*
|
|
IF( LEND.GT.L ) THEN
|
|
*
|
|
* QL Iteration
|
|
*
|
|
* Look for small subdiagonal element.
|
|
*
|
|
40 CONTINUE
|
|
IF( L.NE.LEND ) THEN
|
|
LENDM1 = LEND - 1
|
|
DO 50 M = L, LENDM1
|
|
TST = ABS( E( M ) )**2
|
|
IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
|
|
$ SAFMIN )GO TO 60
|
|
50 CONTINUE
|
|
END IF
|
|
*
|
|
M = LEND
|
|
*
|
|
60 CONTINUE
|
|
IF( M.LT.LEND )
|
|
$ E( M ) = ZERO
|
|
P = D( L )
|
|
IF( M.EQ.L )
|
|
$ GO TO 80
|
|
*
|
|
* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
|
* to compute its eigensystem.
|
|
*
|
|
IF( M.EQ.L+1 ) THEN
|
|
IF( ICOMPZ.GT.0 ) THEN
|
|
CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
|
|
WORK( L ) = C
|
|
WORK( N-1+L ) = S
|
|
CALL ZLASR( 'R', 'V', 'B', N, 2, WORK( L ),
|
|
$ WORK( N-1+L ), Z( 1, L ), LDZ )
|
|
ELSE
|
|
CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
|
|
END IF
|
|
D( L ) = RT1
|
|
D( L+1 ) = RT2
|
|
E( L ) = ZERO
|
|
L = L + 2
|
|
IF( L.LE.LEND )
|
|
$ GO TO 40
|
|
GO TO 140
|
|
END IF
|
|
*
|
|
IF( JTOT.EQ.NMAXIT )
|
|
$ GO TO 140
|
|
JTOT = JTOT + 1
|
|
*
|
|
* Form shift.
|
|
*
|
|
G = ( D( L+1 )-P ) / ( TWO*E( L ) )
|
|
R = DLAPY2( G, ONE )
|
|
G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
|
|
*
|
|
S = ONE
|
|
C = ONE
|
|
P = ZERO
|
|
*
|
|
* Inner loop
|
|
*
|
|
MM1 = M - 1
|
|
DO 70 I = MM1, L, -1
|
|
F = S*E( I )
|
|
B = C*E( I )
|
|
CALL DLARTG( G, F, C, S, R )
|
|
IF( I.NE.M-1 )
|
|
$ E( I+1 ) = R
|
|
G = D( I+1 ) - P
|
|
R = ( D( I )-G )*S + TWO*C*B
|
|
P = S*R
|
|
D( I+1 ) = G + P
|
|
G = C*R - B
|
|
*
|
|
* If eigenvectors are desired, then save rotations.
|
|
*
|
|
IF( ICOMPZ.GT.0 ) THEN
|
|
WORK( I ) = C
|
|
WORK( N-1+I ) = -S
|
|
END IF
|
|
*
|
|
70 CONTINUE
|
|
*
|
|
* If eigenvectors are desired, then apply saved rotations.
|
|
*
|
|
IF( ICOMPZ.GT.0 ) THEN
|
|
MM = M - L + 1
|
|
CALL ZLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
|
|
$ Z( 1, L ), LDZ )
|
|
END IF
|
|
*
|
|
D( L ) = D( L ) - P
|
|
E( L ) = G
|
|
GO TO 40
|
|
*
|
|
* Eigenvalue found.
|
|
*
|
|
80 CONTINUE
|
|
D( L ) = P
|
|
*
|
|
L = L + 1
|
|
IF( L.LE.LEND )
|
|
$ GO TO 40
|
|
GO TO 140
|
|
*
|
|
ELSE
|
|
*
|
|
* QR Iteration
|
|
*
|
|
* Look for small superdiagonal element.
|
|
*
|
|
90 CONTINUE
|
|
IF( L.NE.LEND ) THEN
|
|
LENDP1 = LEND + 1
|
|
DO 100 M = L, LENDP1, -1
|
|
TST = ABS( E( M-1 ) )**2
|
|
IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
|
|
$ SAFMIN )GO TO 110
|
|
100 CONTINUE
|
|
END IF
|
|
*
|
|
M = LEND
|
|
*
|
|
110 CONTINUE
|
|
IF( M.GT.LEND )
|
|
$ E( M-1 ) = ZERO
|
|
P = D( L )
|
|
IF( M.EQ.L )
|
|
$ GO TO 130
|
|
*
|
|
* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
|
* to compute its eigensystem.
|
|
*
|
|
IF( M.EQ.L-1 ) THEN
|
|
IF( ICOMPZ.GT.0 ) THEN
|
|
CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
|
|
WORK( M ) = C
|
|
WORK( N-1+M ) = S
|
|
CALL ZLASR( 'R', 'V', 'F', N, 2, WORK( M ),
|
|
$ WORK( N-1+M ), Z( 1, L-1 ), LDZ )
|
|
ELSE
|
|
CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
|
|
END IF
|
|
D( L-1 ) = RT1
|
|
D( L ) = RT2
|
|
E( L-1 ) = ZERO
|
|
L = L - 2
|
|
IF( L.GE.LEND )
|
|
$ GO TO 90
|
|
GO TO 140
|
|
END IF
|
|
*
|
|
IF( JTOT.EQ.NMAXIT )
|
|
$ GO TO 140
|
|
JTOT = JTOT + 1
|
|
*
|
|
* Form shift.
|
|
*
|
|
G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
|
|
R = DLAPY2( G, ONE )
|
|
G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
|
|
*
|
|
S = ONE
|
|
C = ONE
|
|
P = ZERO
|
|
*
|
|
* Inner loop
|
|
*
|
|
LM1 = L - 1
|
|
DO 120 I = M, LM1
|
|
F = S*E( I )
|
|
B = C*E( I )
|
|
CALL DLARTG( G, F, C, S, R )
|
|
IF( I.NE.M )
|
|
$ E( I-1 ) = R
|
|
G = D( I ) - P
|
|
R = ( D( I+1 )-G )*S + TWO*C*B
|
|
P = S*R
|
|
D( I ) = G + P
|
|
G = C*R - B
|
|
*
|
|
* If eigenvectors are desired, then save rotations.
|
|
*
|
|
IF( ICOMPZ.GT.0 ) THEN
|
|
WORK( I ) = C
|
|
WORK( N-1+I ) = S
|
|
END IF
|
|
*
|
|
120 CONTINUE
|
|
*
|
|
* If eigenvectors are desired, then apply saved rotations.
|
|
*
|
|
IF( ICOMPZ.GT.0 ) THEN
|
|
MM = L - M + 1
|
|
CALL ZLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
|
|
$ Z( 1, M ), LDZ )
|
|
END IF
|
|
*
|
|
D( L ) = D( L ) - P
|
|
E( LM1 ) = G
|
|
GO TO 90
|
|
*
|
|
* Eigenvalue found.
|
|
*
|
|
130 CONTINUE
|
|
D( L ) = P
|
|
*
|
|
L = L - 1
|
|
IF( L.GE.LEND )
|
|
$ GO TO 90
|
|
GO TO 140
|
|
*
|
|
END IF
|
|
*
|
|
* Undo scaling if necessary
|
|
*
|
|
140 CONTINUE
|
|
IF( ISCALE.EQ.1 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
|
|
$ D( LSV ), N, INFO )
|
|
CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
|
|
$ N, INFO )
|
|
ELSE IF( ISCALE.EQ.2 ) THEN
|
|
CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
|
|
$ D( LSV ), N, INFO )
|
|
CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
|
|
$ N, INFO )
|
|
END IF
|
|
*
|
|
* Check for no convergence to an eigenvalue after a total
|
|
* of N*MAXIT iterations.
|
|
*
|
|
IF( JTOT.EQ.NMAXIT ) THEN
|
|
DO 150 I = 1, N - 1
|
|
IF( E( I ).NE.ZERO )
|
|
$ INFO = INFO + 1
|
|
150 CONTINUE
|
|
RETURN
|
|
END IF
|
|
GO TO 10
|
|
*
|
|
* Order eigenvalues and eigenvectors.
|
|
*
|
|
160 CONTINUE
|
|
IF( ICOMPZ.EQ.0 ) THEN
|
|
*
|
|
* Use Quick Sort
|
|
*
|
|
CALL DLASRT( 'I', N, D, INFO )
|
|
*
|
|
ELSE
|
|
*
|
|
* Use Selection Sort to minimize swaps of eigenvectors
|
|
*
|
|
DO 180 II = 2, N
|
|
I = II - 1
|
|
K = I
|
|
P = D( I )
|
|
DO 170 J = II, N
|
|
IF( D( J ).LT.P ) THEN
|
|
K = J
|
|
P = D( J )
|
|
END IF
|
|
170 CONTINUE
|
|
IF( K.NE.I ) THEN
|
|
D( K ) = D( I )
|
|
D( I ) = P
|
|
CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
|
|
END IF
|
|
180 CONTINUE
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of ZSTEQR
|
|
*
|
|
END
|