lammps/src/fix_nve_sphere.cpp

350 lines
9.3 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "string.h"
#include "fix_nve_sphere.h"
#include "atom.h"
#include "atom_vec.h"
#include "update.h"
#include "respa.h"
#include "force.h"
#include "error.h"
using namespace LAMMPS_NS;
#define INERTIA 0.4 // moment of inertia for sphere
enum{NONE,DIPOLE};
/* ---------------------------------------------------------------------- */
FixNVESphere::FixNVESphere(LAMMPS *lmp, int narg, char **arg) :
FixNVE(lmp, narg, arg)
{
if (narg < 3) error->all("Illegal fix nve/sphere command");
time_integrate = 1;
// process extra keywords
extra = NONE;
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"update") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nve/sphere command");
if (strcmp(arg[iarg+1],"dipole") == 0) extra = DIPOLE;
else error->all("Illegal fix nve/sphere command");
iarg += 2;
} else error->all("Illegal fix nve/sphere command");
}
// error checks
if (!atom->omega_flag || !atom->torque_flag)
error->all("Fix nve/sphere requires atom attributes omega, torque");
if (!atom->radius_flag && !atom->avec->shape_type)
error->all("Fix nve/sphere requires atom attribute radius or shape");
if (extra == DIPOLE && !atom->mu_flag)
error->all("Fix nve/sphere requires atom attribute mu");
}
/* ---------------------------------------------------------------------- */
int FixNVESphere::setmask()
{
int mask = 0;
mask |= INITIAL_INTEGRATE;
mask |= FINAL_INTEGRATE;
mask |= INITIAL_INTEGRATE_RESPA;
mask |= FINAL_INTEGRATE_RESPA;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixNVESphere::init()
{
int i,itype;
// check that all particles are finite-size and spherical
// no point particles allowed
if (atom->radius_flag) {
double *radius = atom->radius;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
if (radius[i] == 0.0)
error->one("Fix nve/sphere requires extended particles");
}
} else {
double **shape = atom->shape;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
itype = type[i];
if (shape[itype][0] == 0.0)
error->one("Fix nve/sphere requires extended particles");
if (shape[itype][0] != shape[itype][1] ||
shape[itype][0] != shape[itype][2])
error->one("Fix nve/sphere requires spherical particle shapes");
}
}
FixNVE::init();
}
/* ---------------------------------------------------------------------- */
void FixNVESphere::initial_integrate(int vflag)
{
int itype;
double dtfm,dtirotate,msq,scale;
double g[3];
double **x = atom->x;
double **v = atom->v;
double **f = atom->f;
double **omega = atom->omega;
double **torque = atom->torque;
double *radius = atom->radius;
double *rmass = atom->rmass;
double *mass = atom->mass;
double **shape = atom->shape;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
// set timestep here since dt may have changed or come via rRESPA
double dtfrotate = dtf / INERTIA;
// update v,x,omega for all particles
// d_omega/dt = torque / inertia
// 4 cases depending on radius vs shape and rmass vs mass
if (radius) {
if (rmass) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
dtfm = dtf / rmass[i];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
x[i][0] += dtv * v[i][0];
x[i][1] += dtv * v[i][1];
x[i][2] += dtv * v[i][2];
dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
itype = type[i];
dtfm = dtf / mass[itype];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
x[i][0] += dtv * v[i][0];
x[i][1] += dtv * v[i][1];
x[i][2] += dtv * v[i][2];
dtirotate = dtfrotate / (radius[i]*radius[i]*mass[itype]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
}
} else {
if (rmass) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
itype = type[i];
dtfm = dtf / rmass[i];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
x[i][0] += dtv * v[i][0];
x[i][1] += dtv * v[i][1];
x[i][2] += dtv * v[i][2];
dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*rmass[i]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
itype = type[i];
dtfm = dtf / mass[itype];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
x[i][0] += dtv * v[i][0];
x[i][1] += dtv * v[i][1];
x[i][2] += dtv * v[i][2];
dtirotate = dtfrotate /
(shape[itype][0]*shape[itype][0]*mass[itype]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
}
}
// update mu for dipoles
// d_mu/dt = omega cross mu
// renormalize mu to dipole length
if (extra == DIPOLE) {
double **mu = atom->mu;
double *dipole = atom->dipole;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (dipole[type[i]] > 0.0) {
g[0] = mu[i][0] + dtv * (omega[i][1]*mu[i][2]-omega[i][2]*mu[i][1]);
g[1] = mu[i][1] + dtv * (omega[i][2]*mu[i][0]-omega[i][0]*mu[i][2]);
g[2] = mu[i][2] + dtv * (omega[i][0]*mu[i][1]-omega[i][1]*mu[i][0]);
msq = g[0]*g[0] + g[1]*g[1] + g[2]*g[2];
scale = dipole[type[i]]/sqrt(msq);
mu[i][0] = g[0]*scale;
mu[i][1] = g[1]*scale;
mu[i][2] = g[2]*scale;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void FixNVESphere::final_integrate()
{
int itype;
double dtfm,dtirotate;
double **v = atom->v;
double **f = atom->f;
double **omega = atom->omega;
double **torque = atom->torque;
double *mass = atom->mass;
double *rmass = atom->rmass;
double *radius = atom->radius;
double **shape = atom->shape;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
// set timestep here since dt may have changed or come via rRESPA
double dtfrotate = dtf / INERTIA;
// update v,omega for all particles
// d_omega/dt = torque / inertia
// 4 cases depending on radius vs shape and rmass vs mass
if (radius) {
if (rmass) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
dtfm = dtf / rmass[i];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
itype = type[i];
dtfm = dtf / mass[itype];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
dtirotate = dtfrotate / (radius[i]*radius[i]*mass[itype]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
}
} else {
if (rmass) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
itype = type[i];
dtfm = dtf / rmass[i];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*rmass[i]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
itype = type[i];
dtfm = dtf / mass[itype];
v[i][0] += dtfm * f[i][0];
v[i][1] += dtfm * f[i][1];
v[i][2] += dtfm * f[i][2];
dtirotate = dtfrotate /
(shape[itype][0]*shape[itype][0]*mass[itype]);
omega[i][0] += dtirotate * torque[i][0];
omega[i][1] += dtirotate * torque[i][1];
omega[i][2] += dtirotate * torque[i][2];
}
}
}
}
}