forked from lijiext/lammps
232 lines
6.3 KiB
C++
232 lines
6.3 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-93AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Reese Jones (Sandia)
|
|
Philip Howell (Siemens)
|
|
Vikas Varsney (Air Force Research Laboratory)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "math.h"
|
|
#include "string.h"
|
|
#include "compute_heat_flux.h"
|
|
#include "atom.h"
|
|
#include "atom_vec.h"
|
|
#include "update.h"
|
|
#include "force.h"
|
|
#include "comm.h"
|
|
#include "pair.h"
|
|
#include "modify.h"
|
|
#include "group.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "neigh_request.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
#define INVOKED_PERATOM 8
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeHeatFlux::ComputeHeatFlux(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg)
|
|
{
|
|
if (narg != 4) error->all("Illegal compute heat/flux command");
|
|
|
|
vector_flag = 1;
|
|
size_vector = 6;
|
|
extvector = 1;
|
|
|
|
// store pe/atom ID used by heat flux computation
|
|
// insure it is valid for pe/atom computation
|
|
|
|
int n = strlen(arg[3]) + 1;
|
|
id_atomPE = new char[n];
|
|
strcpy(id_atomPE,arg[3]);
|
|
|
|
int icompute = modify->find_compute(id_atomPE);
|
|
if (icompute < 0) error->all("Could not find compute heat/flux compute ID");
|
|
if (modify->compute[icompute]->peatomflag == 0)
|
|
error->all("Compute heat/flux compute ID does not compute pe/atom");
|
|
|
|
vector = new double[6];
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeHeatFlux::~ComputeHeatFlux()
|
|
{
|
|
delete [] id_atomPE;
|
|
delete [] vector;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeHeatFlux::init()
|
|
{
|
|
// error checks
|
|
|
|
if (comm->ghost_velocity == 0)
|
|
error->all("Compute heat/flux requires ghost atoms store velocity");
|
|
|
|
if (force->pair == NULL || force->pair->single_enable == 0)
|
|
error->all("Pair style does not support compute heat/flux");
|
|
|
|
int icompute = modify->find_compute(id_atomPE);
|
|
if (icompute < 0)
|
|
error->all("Compute ID for compute heat/flux does not exist");
|
|
atomPE = modify->compute[icompute];
|
|
|
|
pair = force->pair;
|
|
cutsq = force->pair->cutsq;
|
|
|
|
// need an occasional half neighbor list
|
|
|
|
int irequest = neighbor->request((void *) this);
|
|
neighbor->requests[irequest]->pair = 0;
|
|
neighbor->requests[irequest]->compute = 1;
|
|
neighbor->requests[irequest]->occasional = 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeHeatFlux::init_list(int id, NeighList *ptr)
|
|
{
|
|
list = ptr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeHeatFlux::compute_vector()
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz;
|
|
double rsq,eng,fpair,factor_coul,factor_lj,factor;
|
|
double fdotv,massone,ke,pe;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
invoked_vector = update->ntimestep;
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
int *type = atom->type;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
int nall = nlocal + atom->nghost;
|
|
double *special_coul = force->special_coul;
|
|
double *special_lj = force->special_lj;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
// invoke half neighbor list (will copy or build if necessary)
|
|
|
|
neighbor->build_one(list->index);
|
|
|
|
// invoke ghost comm to insure ghost vels are up-to-date
|
|
|
|
comm->forward_comm();
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// heat flux J = \sum_i e_i v_i + \sum_{i<j} (f_ij . v_j) x_ij
|
|
|
|
// virial-like contribution
|
|
// loop over neighbors of my atoms
|
|
// require either i or j be in compute group
|
|
|
|
double Jv[3] = {0.0,0.0,0.0};
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
|
|
if (j < nall) factor_coul = factor_lj = 1.0;
|
|
else {
|
|
factor_coul = special_coul[j/nall];
|
|
factor_lj = special_lj[j/nall];
|
|
j %= nall;
|
|
}
|
|
|
|
if (!(mask[i] & groupbit) && !(mask[j] & groupbit)) continue;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
eng = pair->single(i,j,itype,jtype,rsq,factor_coul,factor_lj,fpair);
|
|
|
|
if (newton_pair || j < nlocal) factor = 1.0;
|
|
else factor = 0.5;
|
|
|
|
// symmetrize velocities
|
|
|
|
double vx = 0.5*(v[i][0]+v[j][0]);
|
|
double vy = 0.5*(v[i][1]+v[j][1]);
|
|
double vz = 0.5*(v[i][2]+v[j][2]);
|
|
fdotv = factor * fpair * (delx*vx + dely*vy + delz*vz);
|
|
|
|
Jv[0] += fdotv*delx;
|
|
Jv[1] += fdotv*dely;
|
|
Jv[2] += fdotv*delz;
|
|
}
|
|
}
|
|
}
|
|
|
|
// energy convection contribution
|
|
// uses per-atom potential energy
|
|
|
|
if (!(atomPE->invoked_flag & INVOKED_PERATOM)) {
|
|
atomPE->compute_peratom();
|
|
atomPE->invoked_flag |= INVOKED_PERATOM;
|
|
}
|
|
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
double mvv2e = force->mvv2e;
|
|
|
|
double Jc[3] = {0.0,0.0,0.0};
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
massone = (rmass) ? rmass[i] : mass[type[i]];
|
|
ke = mvv2e * 0.5 * massone *
|
|
(v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]);
|
|
pe = atomPE->vector_atom[i];
|
|
eng = pe + ke;
|
|
Jc[0] += v[i][0]*eng;
|
|
Jc[1] += v[i][1]*eng;
|
|
Jc[2] += v[i][2]*eng;
|
|
}
|
|
}
|
|
|
|
// total flux
|
|
|
|
double data[6] = {Jv[0]+Jc[0],Jv[1]+Jc[1],Jv[2]+Jc[2],
|
|
Jc[0],Jc[1],Jc[2]};
|
|
MPI_Allreduce(data,vector,6,MPI_DOUBLE,MPI_SUM,world);
|
|
}
|