lammps/lib/atc/FE_Element.h

358 lines
10 KiB
C++

#ifndef FE_ELEMENT_H
#define FE_ELEMENT_H
#include <vector>
#include <string>
// ATC_Transfer headers
#include "MatrixLibrary.h"
#include "Array2D.h"
#include "ATC_TypeDefs.h"
namespace ATC {
enum ProjectionGuessType {
COORDINATE_ALIGNED=0,
CENTROID_LINEARIZED,
TWOD_ANALYTIC};
// Forward declarations
class FE_Interpolate;
/**
* @class FE_Element
* @brief Base class for a finite element holding info for canonical element
*/
class FE_Element {
public:
///////////////////////////////////////////////////////////////////////////
//
// CONSTRUCTOR AND DESTRUCTOR
FE_Element(const int nSD,
int numFaces,
int numNodes,
int numFaceNodes,
int numNodes1d);
virtual ~FE_Element();
///////////////////////////////////////////////////////////////////////////
//
// GETTERS
/** get number of spatial dimensions (almost always 3) */
int num_dims() { return nSD_; }
/** get number of element nodes */
int num_elt_nodes() { return numNodes_; }
/** get number of element nodes */
int num_elt_nodes_1d() { return numNodes1d_; }
/** get number of faces */
int num_faces() { return numFaces_; }
/** get number of face nodes */
int num_face_nodes() { return numFaceNodes_; }
// Getters for FE_Interpoate to have access to coordinates and connectivity
/** get canonical coordinates */
const DENS_MAT &local_coords() const { return localCoords_; }
/** get canonical coordinates in 1d */
DENS_VEC local_coords_1d() const;
/** get canonical connectivity of nodes and faces */
const Array2D<int> &local_face_conn() const { return localFaceConn_; }
/** return volume of the element */
const double vol() const { return vol_; }
/** return area of a face */
const double face_area() const { return faceArea_; }
// the following two are pass-throughs to the interpolate class, and
// can thus only be declared in the class body (or else the
// interpolate class is "incomplete" and cannot be referenced)
/** get number of integration points */
int num_ips() const;
/** get number of integration points */
int num_face_ips() const;
/** order of interpolation */
int order() const {return numNodes1d_;}
/** compute the quadrature for a given element type */
virtual void set_quadrature(FeIntQuadrature type) = 0;
/** return the set of 1d nodes that correspond to this node in 3d space */
void mapping(const int inode, std::vector<int> &mapping) const;
/** extract face coordinates from element coordinates */
void face_coordinates(const DENS_MAT &eltCoords,
const int faceID,
DENS_MAT &faceCoords) const;
/** set initial guess type for point in element search */
void set_projection_guess(ProjectionGuessType type)
{ projectionGuess_ = type;}
///////////////////////////////////////////////////////////////////////////
//
// GENERIC ELEMENT COMPUTATIONS
/** compute local coordinates from global */
virtual bool local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const;
/** location of local coordinates (0,0,0) */
virtual void centroid(const DENS_MAT &eltCoords,
DENS_VEC & centroid) const;
/** test if a specified element actually contains the given point */
virtual bool contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const;
/** check if element bounding box contains the given point */
bool range_check(const DENS_MAT &eltCoords, const DENS_VEC & x) const;
/** get the min and max coordinate of any point in an element in a
* dimension */
void bounds_in_dim(const DENS_MAT &eltCoords, const int dim,
double &min, double &max) const;
///////////////////////////////////////////////////////////////////////////
//
//PASS-THROUGHS TO INTERPOLATE CLASS
virtual void shape_function(const VECTOR & xi,
DENS_VEC &N) const;
/**
* compute shape functions at all ip's:
* indexed: N(ip,node)
* dN[nsd](ip,node)
* weights(ip)
*/
virtual void shape_function(const DENS_MAT eltCoords,
DENS_MAT &N,
std::vector<DENS_MAT> &dN,
DIAG_MAT &weights);
/**
* compute shape functions and derivatives at a single point,
* given the point and the element that contains it
* indexed: N(node)
*/
virtual void shape_function(const DENS_MAT eltCoords,
const VECTOR &x,
DENS_VEC &N);
/**
* compute shape functions and derivatives at a single point,
* given the point and the element that contains it
* indexed: N(node)
* dNdx(ip,nSD)
*/
virtual void shape_function(const DENS_MAT eltCoords,
const VECTOR &x,
DENS_VEC &N,
DENS_MAT &dNdx);
/**
* compute shape functions and derivatives at a single point,
* given the point and the element that contains it
* indexed:
* dNdx(ip,nSD)
*/
virtual void shape_function_derivatives(const DENS_MAT eltCoords,
const VECTOR &x,
DENS_MAT &dNdx);
/**
* compute shape functions at all face ip's:
* indexed: N(ip,node)
* n[nsd](ip,node)
* weights(ip)
*/
virtual void face_shape_function(const DENS_MAT &eltCoords,
const int faceID,
DENS_MAT &N,
DENS_MAT &n,
DIAG_MAT &weights);
/**
* compute shape functions at all face ip's:
* indexed: N(ip,node)
* dN[nsd](ip,node)
* Nn[nsd](ip,node)
* weights(ip)
*/
virtual void face_shape_function(const DENS_MAT &eltCoords,
const int faceID,
DENS_MAT &N,
std::vector<DENS_MAT> &dN,
std::vector<DENS_MAT> &Nn,
DIAG_MAT &weights);
/**
* compute normal vector from the specified face
* indexed: normal(nSD)
*/
virtual double face_normal(const DENS_MAT &eltCoords,
const int faceID,
int ip,
DENS_VEC &normal);
/**
* compute tangents to local coordinates
* indexed:
*/
virtual void tangents(const DENS_MAT &eltCoords,
const DENS_VEC &x,
std::vector<DENS_VEC> & tangents,
const bool normalize=false) const;
protected:
///////////////////////////////////////////////////////////////////////////
//
// HELPERS
/**
* generate the appropriate interpolation class
*/
FE_Interpolate *interpolate_factory(std::string interpolateType);
/** initial guess for local coordinates */
virtual void initial_local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xiInitial) const;
///////////////////////////////////////////////////////////////////////////
//
// PROTECTED MEMBERS
// Currently used interpolation class
FE_Interpolate *feInterpolate_;
// Number of spatial dimensions
int nSD_;
// Number of faces, used for generic contains_point
int numFaces_;
// Number of element nodes
int numNodes_;
// Number of face nodes
int numFaceNodes_;
// Number of nodes in one dimension
int numNodes1d_;
// local coords of nodes: localCoords_(isd, ip)
DENS_MAT localCoords_;
// local face numbering
Array2D<int> localFaceConn_;
// volume of canonical element
double vol_;
// area of faces of canonical element
double faceArea_;
/** tolerance used in solving Newton's method for local coordinates */
double tolerance_;
ProjectionGuessType projectionGuess_;
};
/**
* @class FE_ElementHex
* @author Sean Laguna
* @brief 3D, linear 8-node hex element
*/
class FE_ElementHex : public FE_Element {
public:
FE_ElementHex(int numNodes,
int numFaceNodes,
int numNodes1d);
// Dump state info to disk for later restart (unimplemented)
void write_restart(FILE *);
~FE_ElementHex();
void set_quadrature(FeIntQuadrature type);
bool contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const;
};
/**
* @class FE_ElementRect
* @author Greg Wagner, amended by Sean Laguna
* @brief 3D, linear 8-node rectilinear hex element
*/
class FE_ElementRect : public FE_ElementHex {
public:
FE_ElementRect();
// Dump state info to disk for later restart (unimplemented)
void write_restart(FILE *);
~FE_ElementRect();
bool local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const;
protected:
virtual bool contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const;
};
/**
* @class FE_ElementTet
* @author Aaron Gable & Sean Laguna
* @brief 3D, linear 4-node tetrahedral element
*/
class FE_ElementTet : public FE_Element {
public:
FE_ElementTet(int numNodes,
int numFaceNodes,
int numNodes1d);
// Dump state info to disk for later restart (unimplemented)
void write_restart(FILE *);
~FE_ElementTet();
void set_quadrature(FeIntQuadrature type);
bool local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const;
bool contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const;
};
}; // namespace ATC
#endif // FE_ELEMENT_H