lammps/src/atom_vec_tri.cpp

1565 lines
42 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "string.h"
#include "atom_vec_tri.h"
#include "math_extra.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "modify.h"
#include "force.h"
#include "fix.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define DELTA 10000
#define DELTA_BONUS 10000
#define EPSILON 0.001
/* ---------------------------------------------------------------------- */
AtomVecTri::AtomVecTri(LAMMPS *lmp, int narg, char **arg) :
AtomVec(lmp, narg, arg)
{
molecular = 0;
comm_x_only = comm_f_only = 0;
size_forward = 7;
size_reverse = 6;
size_border = 24;
size_velocity = 6;
size_data_atom = 8;
size_data_vel = 7;
size_data_bonus = 10;
xcol_data = 6;
atom->tri_flag = 1;
atom->molecule_flag = atom->rmass_flag = 1;
atom->angmom_flag = atom->torque_flag = 1;
nlocal_bonus = nghost_bonus = nmax_bonus = 0;
bonus = NULL;
}
/* ---------------------------------------------------------------------- */
AtomVecTri::~AtomVecTri()
{
memory->sfree(bonus);
}
/* ---------------------------------------------------------------------- */
void AtomVecTri::init()
{
AtomVec::init();
if (domain->dimension != 3)
error->all(FLERR,"Atom_style tri can only be used in 3d simulations");
}
/* ----------------------------------------------------------------------
grow atom arrays
n = 0 grows arrays by DELTA
n > 0 allocates arrays to size n
------------------------------------------------------------------------- */
void AtomVecTri::grow(int n)
{
if (n == 0) nmax += DELTA;
else nmax = n;
atom->nmax = nmax;
if (nmax < 0 || nmax > MAXSMALLINT)
error->one(FLERR,"Per-processor system is too big");
tag = memory->grow(atom->tag,nmax,"atom:tag");
type = memory->grow(atom->type,nmax,"atom:type");
mask = memory->grow(atom->mask,nmax,"atom:mask");
image = memory->grow(atom->image,nmax,"atom:image");
x = memory->grow(atom->x,nmax,3,"atom:x");
v = memory->grow(atom->v,nmax,3,"atom:v");
f = memory->grow(atom->f,nmax*comm->nthreads,3,"atom:f");
molecule = memory->grow(atom->molecule,nmax,"atom:molecule");
rmass = memory->grow(atom->rmass,nmax,"atom:rmass");
angmom = memory->grow(atom->angmom,nmax,3,"atom:angmom");
torque = memory->grow(atom->torque,nmax*comm->nthreads,3,"atom:torque");
tri = memory->grow(atom->tri,nmax,"atom:tri");
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
modify->fix[atom->extra_grow[iextra]]->grow_arrays(nmax);
}
/* ----------------------------------------------------------------------
reset local array ptrs
------------------------------------------------------------------------- */
void AtomVecTri::grow_reset()
{
tag = atom->tag; type = atom->type;
mask = atom->mask; image = atom->image;
x = atom->x; v = atom->v; f = atom->f;
molecule = atom->molecule; rmass = atom->rmass;
angmom = atom->angmom; torque = atom->torque;
}
/* ----------------------------------------------------------------------
grow bonus data structure
------------------------------------------------------------------------- */
void AtomVecTri::grow_bonus()
{
nmax_bonus += DELTA_BONUS;
if (nmax_bonus < 0 || nmax_bonus > MAXSMALLINT)
error->one(FLERR,"Per-processor system is too big");
bonus = (Bonus *) memory->srealloc(bonus,nmax_bonus*sizeof(Bonus),
"atom:bonus");
}
/* ----------------------------------------------------------------------
copy atom I info to atom J
if delflag and atom J has bonus data, then delete it
------------------------------------------------------------------------- */
void AtomVecTri::copy(int i, int j, int delflag)
{
tag[j] = tag[i];
type[j] = type[i];
mask[j] = mask[i];
image[j] = image[i];
x[j][0] = x[i][0];
x[j][1] = x[i][1];
x[j][2] = x[i][2];
v[j][0] = v[i][0];
v[j][1] = v[i][1];
v[j][2] = v[i][2];
molecule[j] = molecule[i];
rmass[j] = rmass[i];
angmom[j][0] = angmom[i][0];
angmom[j][1] = angmom[i][1];
angmom[j][2] = angmom[i][2];
// if delflag and atom J has bonus data, then delete it
if (delflag && tri[j] >= 0) {
copy_bonus(nlocal_bonus-1,tri[j]);
nlocal_bonus--;
}
// if atom I has bonus data and not deleting I, repoint I's bonus to J
if (tri[i] >= 0 && i != j) bonus[tri[i]].ilocal = j;
tri[j] = tri[i];
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
modify->fix[atom->extra_grow[iextra]]->copy_arrays(i,j);
}
/* ----------------------------------------------------------------------
copy bonus data from I to J, effectively deleting the J entry
insure index pointers between per-atom and bonus data are updated
------------------------------------------------------------------------- */
void AtomVecTri::copy_bonus(int i, int j)
{
memcpy(&bonus[j],&bonus[i],sizeof(Bonus));
tri[bonus[j].ilocal] = j;
}
/* ----------------------------------------------------------------------
clear ghost info in bonus data
called before ghosts are recommunicated in comm and irregular
------------------------------------------------------------------------- */
void AtomVecTri::clear_bonus()
{
nghost_bonus = 0;
}
/* ----------------------------------------------------------------------
set equilateral tri of size in bonus data for particle I
oriented symmetrically in xy plane
this may create or delete entry in bonus data
------------------------------------------------------------------------- */
void AtomVecTri::set_equilateral(int i, double size)
{
if (tri[i] < 0) {
if (size == 0.0) return;
if (nlocal_bonus == nmax_bonus) grow_bonus();
double *quat = bonus[nlocal_bonus].quat;
double *c1 = bonus[nlocal_bonus].c1;
double *c2 = bonus[nlocal_bonus].c2;
double *c3 = bonus[nlocal_bonus].c3;
double *inertia = bonus[nlocal_bonus].inertia;
quat[0] = 1.0;
quat[1] = 0.0;
quat[2] = 0.0;
quat[3] = 0.0;
c1[0] = -size/2.0;
c1[1] = -sqrt(3.0)/2.0 * size / 3.0;
c1[2] = 0.0;
c2[0] = size/2.0;
c2[1] = -sqrt(3.0)/2.0 * size / 3.0;
c2[2] = 0.0;
c3[0] = 0.0;
c3[1] = sqrt(3.0)/2.0 * size * 2.0/3.0;
c3[2] = 0.0;
inertia[0] = sqrt(3.0)/96.0 * size*size*size*size;
inertia[1] = sqrt(3.0)/96.0 * size*size*size*size;
inertia[2] = sqrt(3.0)/48.0 * size*size*size*size;
bonus[nlocal_bonus].ilocal = i;
tri[i] = nlocal_bonus++;
} else if (size == 0.0) {
copy_bonus(nlocal_bonus-1,tri[i]);
nlocal_bonus--;
tri[i] = -1;
} else {
double *c1 = bonus[tri[i]].c1;
double *c2 = bonus[tri[i]].c2;
double *c3 = bonus[tri[i]].c3;
double *inertia = bonus[tri[i]].inertia;
c1[0] = -size/2.0;
c1[1] = -sqrt(3.0)/2.0 * size / 3.0;
c1[2] = 0.0;
c2[0] = size/2.0;
c2[1] = -sqrt(3.0)/2.0 * size / 3.0;
c2[2] = 0.0;
c3[0] = 0.0;
c3[1] = sqrt(3.0)/2.0 * size * 2.0/3.0;
c3[2] = 0.0;
inertia[0] = sqrt(3.0)/96.0 * size*size*size*size;
inertia[1] = sqrt(3.0)/96.0 * size*size*size*size;
inertia[2] = sqrt(3.0)/48.0 * size*size*size*size;
}
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_comm(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,j,m;
double dx,dy,dz;
double *quat;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
if (tri[j] >= 0) {
quat = bonus[tri[j]].quat;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
}
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0]*domain->xprd;
dy = pbc[1]*domain->yprd;
dz = pbc[2]*domain->zprd;
} else {
dx = pbc[0]*domain->xprd + pbc[5]*domain->xy + pbc[4]*domain->xz;
dy = pbc[1]*domain->yprd + pbc[3]*domain->yz;
dz = pbc[2]*domain->zprd;
}
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
if (tri[j] >= 0) {
quat = bonus[tri[j]].quat;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
}
}
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_comm_vel(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,j,m;
double dx,dy,dz,dvx,dvy,dvz;
double *quat;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
if (tri[j] >= 0) {
quat = bonus[tri[j]].quat;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
}
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
buf[m++] = angmom[j][0];
buf[m++] = angmom[j][1];
buf[m++] = angmom[j][2];
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0]*domain->xprd;
dy = pbc[1]*domain->yprd;
dz = pbc[2]*domain->zprd;
} else {
dx = pbc[0]*domain->xprd + pbc[5]*domain->xy + pbc[4]*domain->xz;
dy = pbc[1]*domain->yprd + pbc[3]*domain->yz;
dz = pbc[2]*domain->zprd;
}
if (!deform_vremap) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
if (tri[j] >= 0) {
quat = bonus[tri[j]].quat;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
}
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
buf[m++] = angmom[j][0];
buf[m++] = angmom[j][1];
buf[m++] = angmom[j][2];
}
} else {
dvx = pbc[0]*h_rate[0] + pbc[5]*h_rate[5] + pbc[4]*h_rate[4];
dvy = pbc[1]*h_rate[1] + pbc[3]*h_rate[3];
dvz = pbc[2]*h_rate[2];
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
if (tri[j] >= 0) {
quat = bonus[tri[j]].quat;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
}
if (mask[i] & deform_groupbit) {
buf[m++] = v[j][0] + dvx;
buf[m++] = v[j][1] + dvy;
buf[m++] = v[j][2] + dvz;
} else {
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
buf[m++] = angmom[j][0];
buf[m++] = angmom[j][1];
buf[m++] = angmom[j][2];
}
}
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_comm_hybrid(int n, int *list, double *buf)
{
int i,j,m;
double *quat;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
if (tri[j] >= 0) {
quat = bonus[tri[j]].quat;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void AtomVecTri::unpack_comm(int n, int first, double *buf)
{
int i,m,last;
double *quat;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
if (tri[i] >= 0) {
quat = bonus[tri[i]].quat;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
}
}
}
/* ---------------------------------------------------------------------- */
void AtomVecTri::unpack_comm_vel(int n, int first, double *buf)
{
int i,m,last;
double *quat;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
if (tri[i] >= 0) {
quat = bonus[tri[i]].quat;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
}
v[i][0] = buf[m++];
v[i][1] = buf[m++];
v[i][2] = buf[m++];
angmom[i][0] = buf[m++];
angmom[i][1] = buf[m++];
angmom[i][2] = buf[m++];
}
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::unpack_comm_hybrid(int n, int first, double *buf)
{
int i,m,last;
double *quat;
m = 0;
last = first + n;
for (i = first; i < last; i++)
if (tri[i] >= 0) {
quat = bonus[tri[i]].quat;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_reverse(int n, int first, double *buf)
{
int i,m,last;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
buf[m++] = f[i][0];
buf[m++] = f[i][1];
buf[m++] = f[i][2];
buf[m++] = torque[i][0];
buf[m++] = torque[i][1];
buf[m++] = torque[i][2];
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_reverse_hybrid(int n, int first, double *buf)
{
int i,m,last;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
buf[m++] = torque[i][0];
buf[m++] = torque[i][1];
buf[m++] = torque[i][2];
}
return m;
}
/* ---------------------------------------------------------------------- */
void AtomVecTri::unpack_reverse(int n, int *list, double *buf)
{
int i,j,m;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
f[j][0] += buf[m++];
f[j][1] += buf[m++];
f[j][2] += buf[m++];
torque[j][0] += buf[m++];
torque[j][1] += buf[m++];
torque[j][2] += buf[m++];
}
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::unpack_reverse_hybrid(int n, int *list, double *buf)
{
int i,j,m;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
torque[j][0] += buf[m++];
torque[j][1] += buf[m++];
torque[j][2] += buf[m++];
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_border(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,j,m;
double dx,dy,dz;
double *quat,*c1,*c2,*c3,*inertia;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
buf[m++] = tag[j];
buf[m++] = type[j];
buf[m++] = mask[j];
buf[m++] = molecule[j];
if (tri[j] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
quat = bonus[tri[j]].quat;
c1 = bonus[tri[j]].c1;
c2 = bonus[tri[j]].c2;
c3 = bonus[tri[j]].c3;
inertia = bonus[tri[j]].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0]*domain->xprd;
dy = pbc[1]*domain->yprd;
dz = pbc[2]*domain->zprd;
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = tag[j];
buf[m++] = type[j];
buf[m++] = mask[j];
buf[m++] = molecule[j];
if (tri[j] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
quat = bonus[tri[j]].quat;
c1 = bonus[tri[j]].c1;
c2 = bonus[tri[j]].c2;
c3 = bonus[tri[j]].c3;
inertia = bonus[tri[j]].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
}
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_border_vel(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,j,m;
double dx,dy,dz,dvx,dvy,dvz;
double *quat,*c1,*c2,*c3,*inertia;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
buf[m++] = tag[j];
buf[m++] = type[j];
buf[m++] = mask[j];
buf[m++] = molecule[j];
if (tri[j] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
quat = bonus[tri[j]].quat;
c1 = bonus[tri[j]].c1;
c2 = bonus[tri[j]].c2;
c3 = bonus[tri[j]].c3;
inertia = bonus[tri[j]].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
buf[m++] = angmom[j][0];
buf[m++] = angmom[j][1];
buf[m++] = angmom[j][2];
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0]*domain->xprd;
dy = pbc[1]*domain->yprd;
dz = pbc[2]*domain->zprd;
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
if (!deform_vremap) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = tag[j];
buf[m++] = type[j];
buf[m++] = mask[j];
buf[m++] = molecule[j];
if (tri[j] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
quat = bonus[tri[j]].quat;
c1 = bonus[tri[j]].c1;
c2 = bonus[tri[j]].c2;
c3 = bonus[tri[j]].c3;
inertia = bonus[tri[j]].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
buf[m++] = angmom[j][0];
buf[m++] = angmom[j][1];
buf[m++] = angmom[j][2];
}
} else {
dvx = pbc[0]*h_rate[0] + pbc[5]*h_rate[5] + pbc[4]*h_rate[4];
dvy = pbc[1]*h_rate[1] + pbc[3]*h_rate[3];
dvz = pbc[2]*h_rate[2];
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = tag[j];
buf[m++] = type[j];
buf[m++] = mask[j];
buf[m++] = molecule[j];
if (tri[j] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
quat = bonus[tri[j]].quat;
c1 = bonus[tri[j]].c1;
c2 = bonus[tri[j]].c2;
c3 = bonus[tri[j]].c3;
inertia = bonus[tri[j]].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
if (mask[i] & deform_groupbit) {
buf[m++] = v[j][0] + dvx;
buf[m++] = v[j][1] + dvy;
buf[m++] = v[j][2] + dvz;
} else {
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
buf[m++] = angmom[j][0];
buf[m++] = angmom[j][1];
buf[m++] = angmom[j][2];
}
}
}
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::pack_border_hybrid(int n, int *list, double *buf)
{
int i,j,m;
double *quat,*c1,*c2,*c3,*inertia;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = molecule[j];
if (tri[j] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
quat = bonus[tri[j]].quat;
c1 = bonus[tri[j]].c1;
c2 = bonus[tri[j]].c2;
c3 = bonus[tri[j]].c3;
inertia = bonus[tri[j]].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void AtomVecTri::unpack_border(int n, int first, double *buf)
{
int i,j,m,last;
double *quat,*c1,*c2,*c3,*inertia;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
if (i == nmax) grow(0);
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
tag[i] = static_cast<int> (buf[m++]);
type[i] = static_cast<int> (buf[m++]);
mask[i] = static_cast<int> (buf[m++]);
molecule[i] = static_cast<int> (buf[m++]);
tri[i] = static_cast<int> (buf[m++]);
if (tri[i] == 0) tri[i] = -1;
else {
j = nlocal_bonus + nghost_bonus;
if (j == nmax_bonus) grow_bonus();
quat = bonus[j].quat;
c1 = bonus[j].c1;
c2 = bonus[j].c2;
c3 = bonus[j].c3;
inertia = bonus[j].inertia;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
c1[0] = buf[m++];
c1[1] = buf[m++];
c1[2] = buf[m++];
c2[0] = buf[m++];
c2[1] = buf[m++];
c2[2] = buf[m++];
c3[0] = buf[m++];
c3[1] = buf[m++];
c3[2] = buf[m++];
inertia[0] = buf[m++];
inertia[1] = buf[m++];
inertia[2] = buf[m++];
bonus[j].ilocal = i;
tri[i] = j;
nghost_bonus++;
}
}
}
/* ---------------------------------------------------------------------- */
void AtomVecTri::unpack_border_vel(int n, int first, double *buf)
{
int i,j,m,last;
double *quat,*c1,*c2,*c3,*inertia;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
if (i == nmax) grow(0);
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
tag[i] = static_cast<int> (buf[m++]);
type[i] = static_cast<int> (buf[m++]);
mask[i] = static_cast<int> (buf[m++]);
molecule[i] = static_cast<int> (buf[m++]);
tri[i] = static_cast<int> (buf[m++]);
if (tri[i] == 0) tri[i] = -1;
else {
j = nlocal_bonus + nghost_bonus;
if (j == nmax_bonus) grow_bonus();
quat = bonus[j].quat;
c1 = bonus[j].c1;
c2 = bonus[j].c2;
c3 = bonus[j].c3;
inertia = bonus[j].inertia;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
c1[0] = buf[m++];
c1[1] = buf[m++];
c1[2] = buf[m++];
c2[0] = buf[m++];
c2[1] = buf[m++];
c2[2] = buf[m++];
c3[0] = buf[m++];
c3[1] = buf[m++];
c3[2] = buf[m++];
inertia[0] = buf[m++];
inertia[1] = buf[m++];
inertia[2] = buf[m++];
bonus[j].ilocal = i;
tri[i] = j;
nghost_bonus++;
}
v[i][0] = buf[m++];
v[i][1] = buf[m++];
v[i][2] = buf[m++];
angmom[i][0] = buf[m++];
angmom[i][1] = buf[m++];
angmom[i][2] = buf[m++];
}
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::unpack_border_hybrid(int n, int first, double *buf)
{
int i,j,m,last;
double *quat,*c1,*c2,*c3,*inertia;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
molecule[i] = static_cast<int> (buf[m++]);
tri[i] = static_cast<int> (buf[m++]);
if (tri[i] == 0) tri[i] = -1;
else {
j = nlocal_bonus + nghost_bonus;
if (j == nmax_bonus) grow_bonus();
quat = bonus[j].quat;
c1 = bonus[j].c1;
c2 = bonus[j].c2;
c3 = bonus[j].c3;
inertia = bonus[j].inertia;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
c1[0] = buf[m++];
c1[1] = buf[m++];
c1[2] = buf[m++];
c2[0] = buf[m++];
c2[1] = buf[m++];
c2[2] = buf[m++];
c3[0] = buf[m++];
c3[1] = buf[m++];
c3[2] = buf[m++];
inertia[0] = buf[m++];
inertia[1] = buf[m++];
inertia[2] = buf[m++];
bonus[j].ilocal = i;
tri[i] = j;
nghost_bonus++;
}
}
return m;
}
/* ----------------------------------------------------------------------
pack data for atom I for sending to another proc
xyz must be 1st 3 values, so comm::exchange() can test on them
------------------------------------------------------------------------- */
int AtomVecTri::pack_exchange(int i, double *buf)
{
int m = 1;
buf[m++] = x[i][0];
buf[m++] = x[i][1];
buf[m++] = x[i][2];
buf[m++] = v[i][0];
buf[m++] = v[i][1];
buf[m++] = v[i][2];
buf[m++] = tag[i];
buf[m++] = type[i];
buf[m++] = mask[i];
*((tagint *) &buf[m++]) = image[i];
buf[m++] = molecule[i];
buf[m++] = rmass[i];
buf[m++] = angmom[i][0];
buf[m++] = angmom[i][1];
buf[m++] = angmom[i][2];
if (tri[i] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
int j = tri[i];
double *quat = bonus[j].quat;
double *c1 = bonus[j].c1;
double *c2 = bonus[j].c2;
double *c3 = bonus[j].c3;
double *inertia = bonus[j].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
m += modify->fix[atom->extra_grow[iextra]]->pack_exchange(i,&buf[m]);
buf[0] = m;
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVecTri::unpack_exchange(double *buf)
{
int nlocal = atom->nlocal;
if (nlocal == nmax) grow(0);
int m = 1;
x[nlocal][0] = buf[m++];
x[nlocal][1] = buf[m++];
x[nlocal][2] = buf[m++];
v[nlocal][0] = buf[m++];
v[nlocal][1] = buf[m++];
v[nlocal][2] = buf[m++];
tag[nlocal] = static_cast<int> (buf[m++]);
type[nlocal] = static_cast<int> (buf[m++]);
mask[nlocal] = static_cast<int> (buf[m++]);
image[nlocal] = *((tagint *) &buf[m++]);
molecule[nlocal] = static_cast<int> (buf[m++]);
rmass[nlocal] = buf[m++];
angmom[nlocal][0] = buf[m++];
angmom[nlocal][1] = buf[m++];
angmom[nlocal][2] = buf[m++];
tri[nlocal] = static_cast<int> (buf[m++]);
if (tri[nlocal] == 0) tri[nlocal] = -1;
else {
if (nlocal_bonus == nmax_bonus) grow_bonus();
double *quat = bonus[nlocal_bonus].quat;
double *c1 = bonus[nlocal_bonus].c1;
double *c2 = bonus[nlocal_bonus].c2;
double *c3 = bonus[nlocal_bonus].c3;
double *inertia = bonus[nlocal_bonus].inertia;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
c1[0] = buf[m++];
c1[1] = buf[m++];
c1[2] = buf[m++];
c2[0] = buf[m++];
c2[1] = buf[m++];
c2[2] = buf[m++];
c3[0] = buf[m++];
c3[1] = buf[m++];
c3[2] = buf[m++];
inertia[0] = buf[m++];
inertia[1] = buf[m++];
inertia[2] = buf[m++];
bonus[nlocal_bonus].ilocal = nlocal;
tri[nlocal] = nlocal_bonus++;
}
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
m += modify->fix[atom->extra_grow[iextra]]->
unpack_exchange(nlocal,&buf[m]);
atom->nlocal++;
return m;
}
/* ----------------------------------------------------------------------
size of restart data for all atoms owned by this proc
include extra data stored by fixes
------------------------------------------------------------------------- */
int AtomVecTri::size_restart()
{
int i;
int n = 0;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++)
if (tri[i] >= 0) n += 33;
else n += 17;
if (atom->nextra_restart)
for (int iextra = 0; iextra < atom->nextra_restart; iextra++)
for (i = 0; i < nlocal; i++)
n += modify->fix[atom->extra_restart[iextra]]->size_restart(i);
return n;
}
/* ----------------------------------------------------------------------
pack atom I's data for restart file including extra quantities
xyz must be 1st 3 values, so that read_restart can test on them
molecular types may be negative, but write as positive
------------------------------------------------------------------------- */
int AtomVecTri::pack_restart(int i, double *buf)
{
int m = 1;
buf[m++] = x[i][0];
buf[m++] = x[i][1];
buf[m++] = x[i][2];
buf[m++] = tag[i];
buf[m++] = type[i];
buf[m++] = mask[i];
*((tagint *) &buf[m++]) = image[i];
buf[m++] = v[i][0];
buf[m++] = v[i][1];
buf[m++] = v[i][2];
buf[m++] = molecule[i];
buf[m++] = rmass[i];
buf[m++] = angmom[i][0];
buf[m++] = angmom[i][1];
buf[m++] = angmom[i][2];
if (tri[i] < 0) buf[m++] = 0;
else {
buf[m++] = 1;
int j = tri[i];
double *quat = bonus[j].quat;
double *c1 = bonus[j].c1;
double *c2 = bonus[j].c2;
double *c3 = bonus[j].c3;
double *inertia = bonus[j].inertia;
buf[m++] = quat[0];
buf[m++] = quat[1];
buf[m++] = quat[2];
buf[m++] = quat[3];
buf[m++] = c1[0];
buf[m++] = c1[1];
buf[m++] = c1[2];
buf[m++] = c2[0];
buf[m++] = c2[1];
buf[m++] = c2[2];
buf[m++] = c3[0];
buf[m++] = c3[1];
buf[m++] = c3[2];
buf[m++] = inertia[0];
buf[m++] = inertia[1];
buf[m++] = inertia[2];
}
if (atom->nextra_restart)
for (int iextra = 0; iextra < atom->nextra_restart; iextra++)
m += modify->fix[atom->extra_restart[iextra]]->pack_restart(i,&buf[m]);
buf[0] = m;
return m;
}
/* ----------------------------------------------------------------------
unpack data for one atom from restart file including extra quantities
------------------------------------------------------------------------- */
int AtomVecTri::unpack_restart(double *buf)
{
int nlocal = atom->nlocal;
if (nlocal == nmax) {
grow(0);
if (atom->nextra_store)
memory->grow(atom->extra,nmax,atom->nextra_store,"atom:extra");
}
int m = 1;
x[nlocal][0] = buf[m++];
x[nlocal][1] = buf[m++];
x[nlocal][2] = buf[m++];
tag[nlocal] = static_cast<int> (buf[m++]);
type[nlocal] = static_cast<int> (buf[m++]);
mask[nlocal] = static_cast<int> (buf[m++]);
image[nlocal] = *((tagint *) &buf[m++]);
v[nlocal][0] = buf[m++];
v[nlocal][1] = buf[m++];
v[nlocal][2] = buf[m++];
molecule[nlocal] = static_cast<int> (buf[m++]);
rmass[nlocal] = buf[m++];
angmom[nlocal][0] = buf[m++];
angmom[nlocal][1] = buf[m++];
angmom[nlocal][2] = buf[m++];
tri[nlocal] = static_cast<int> (buf[m++]);
if (tri[nlocal] == 0) tri[nlocal] = -1;
else {
if (nlocal_bonus == nmax_bonus) grow_bonus();
double *quat = bonus[nlocal_bonus].quat;
double *c1 = bonus[nlocal_bonus].c1;
double *c2 = bonus[nlocal_bonus].c2;
double *c3 = bonus[nlocal_bonus].c3;
double *inertia = bonus[nlocal_bonus].inertia;
quat[0] = buf[m++];
quat[1] = buf[m++];
quat[2] = buf[m++];
quat[3] = buf[m++];
c1[0] = buf[m++];
c1[1] = buf[m++];
c1[2] = buf[m++];
c2[0] = buf[m++];
c2[1] = buf[m++];
c2[2] = buf[m++];
c3[0] = buf[m++];
c3[1] = buf[m++];
c3[2] = buf[m++];
inertia[0] = buf[m++];
inertia[1] = buf[m++];
inertia[2] = buf[m++];
bonus[nlocal_bonus].ilocal = nlocal;
tri[nlocal] = nlocal_bonus++;
}
double **extra = atom->extra;
if (atom->nextra_store) {
int size = static_cast<int> (buf[0]) - m;
for (int i = 0; i < size; i++) extra[nlocal][i] = buf[m++];
}
atom->nlocal++;
return m;
}
/* ----------------------------------------------------------------------
create one atom of itype at coord
set other values to defaults
------------------------------------------------------------------------- */
void AtomVecTri::create_atom(int itype, double *coord)
{
int nlocal = atom->nlocal;
if (nlocal == nmax) grow(0);
tag[nlocal] = 0;
type[nlocal] = itype;
x[nlocal][0] = coord[0];
x[nlocal][1] = coord[1];
x[nlocal][2] = coord[2];
mask[nlocal] = 1;
image[nlocal] = ((tagint) IMGMAX << IMG2BITS) |
((tagint) IMGMAX << IMGBITS) | IMGMAX;
v[nlocal][0] = 0.0;
v[nlocal][1] = 0.0;
v[nlocal][2] = 0.0;
molecule[nlocal] = 0;
rmass[nlocal] = 1.0;
angmom[nlocal][0] = 0.0;
angmom[nlocal][1] = 0.0;
angmom[nlocal][2] = 0.0;
tri[nlocal] = -1;
atom->nlocal++;
}
/* ----------------------------------------------------------------------
unpack one tri from Atoms section of data file
initialize other atom quantities
------------------------------------------------------------------------- */
void AtomVecTri::data_atom(double *coord, tagint imagetmp, char **values)
{
int nlocal = atom->nlocal;
if (nlocal == nmax) grow(0);
tag[nlocal] = atoi(values[0]);
if (tag[nlocal] <= 0)
error->one(FLERR,"Invalid atom ID in Atoms section of data file");
molecule[nlocal] = atoi(values[1]);
type[nlocal] = atoi(values[2]);
if (type[nlocal] <= 0 || type[nlocal] > atom->ntypes)
error->one(FLERR,"Invalid atom type in Atoms section of data file");
tri[nlocal] = atoi(values[3]);
if (tri[nlocal] == 0) tri[nlocal] = -1;
else if (tri[nlocal] == 1) tri[nlocal] = 0;
else error->one(FLERR,"Invalid atom type in Atoms section of data file");
rmass[nlocal] = atof(values[4]);
if (rmass[nlocal] <= 0.0)
error->one(FLERR,"Invalid density in Atoms section of data file");
x[nlocal][0] = coord[0];
x[nlocal][1] = coord[1];
x[nlocal][2] = coord[2];
image[nlocal] = imagetmp;
mask[nlocal] = 1;
v[nlocal][0] = 0.0;
v[nlocal][1] = 0.0;
v[nlocal][2] = 0.0;
angmom[nlocal][0] = 0.0;
angmom[nlocal][1] = 0.0;
angmom[nlocal][2] = 0.0;
atom->nlocal++;
}
/* ----------------------------------------------------------------------
unpack hybrid quantities from one tri in Atoms section of data file
initialize other atom quantities for this sub-style
------------------------------------------------------------------------- */
int AtomVecTri::data_atom_hybrid(int nlocal, char **values)
{
molecule[nlocal] = atoi(values[0]);
tri[nlocal] = atoi(values[1]);
if (tri[nlocal] == 0) tri[nlocal] = -1;
else if (tri[nlocal] == 1) tri[nlocal] = 0;
else error->one(FLERR,"Invalid atom type in Atoms section of data file");
rmass[nlocal] = atof(values[2]);
if (rmass[nlocal] <= 0.0)
error->one(FLERR,"Invalid density in Atoms section of data file");
return 3;
}
/* ----------------------------------------------------------------------
unpack one tri from Tris section of data file
------------------------------------------------------------------------- */
void AtomVecTri::data_atom_bonus(int m, char **values)
{
if (tri[m]) error->one(FLERR,"Assigning tri parameters to non-tri atom");
if (nlocal_bonus == nmax_bonus) grow_bonus();
double c1[3],c2[3],c3[3];
c1[0] = atof(values[0]);
c1[1] = atof(values[1]);
c1[2] = atof(values[2]);
c2[0] = atof(values[3]);
c2[1] = atof(values[4]);
c2[2] = atof(values[5]);
c3[0] = atof(values[6]);
c3[1] = atof(values[7]);
c3[2] = atof(values[8]);
// check for duplicate points
if (c1[0] == c2[0] && c1[1] == c2[1] && c1[2] == c2[2])
error->one(FLERR,"Invalid shape in Triangles section of data file");
if (c1[0] == c3[0] && c1[1] == c3[1] && c1[2] == c3[2])
error->one(FLERR,"Invalid shape in Triangles section of data file");
if (c2[0] == c3[0] && c2[1] == c3[1] && c2[2] == c3[2])
error->one(FLERR,"Invalid shape in Triangles section of data file");
// size = length of one edge
double c2mc1[2],c3mc1[3];
MathExtra::sub3(c2,c1,c2mc1);
MathExtra::sub3(c3,c1,c3mc1);
double size = MAX(MathExtra::len3(c2mc1),MathExtra::len3(c3mc1));
// centroid = 1/3 of sum of vertices
double centroid[3];
centroid[0] = (c1[0]+c2[0]+c3[0]) / 3.0;
centroid[1] = (c1[1]+c2[1]+c3[1]) / 3.0;
centroid[2] = (c1[2]+c2[2]+c3[2]) / 3.0;
double dx = centroid[0] - x[m][0];
double dy = centroid[1] - x[m][1];
double dz = centroid[2] - x[m][2];
double delta = sqrt(dx*dx + dy*dy + dz*dz);
if (delta/size > EPSILON)
error->one(FLERR,"Inconsistent triangle in data file");
x[m][0] = centroid[0];
x[m][1] = centroid[1];
x[m][2] = centroid[2];
// reset tri mass
// previously stored density in rmass
// tri area = 0.5 len(U x V), where U,V are edge vectors from one vertex
double norm[3];
MathExtra::cross3(c2mc1,c3mc1,norm);
double area = 0.5 * MathExtra::len3(norm);
rmass[m] *= area;
// inertia = inertia tensor of triangle as 6-vector in Voigt notation
double inertia[6];
MathExtra::inertia_triangle(c1,c2,c3,rmass[m],inertia);
// diagonalize inertia tensor via Jacobi rotations
// bonus[].inertia = 3 eigenvalues = principal moments of inertia
// evectors and exzy_space = 3 evectors = principal axes of triangle
double tensor[3][3],evectors[3][3];
tensor[0][0] = inertia[0];
tensor[1][1] = inertia[1];
tensor[2][2] = inertia[2];
tensor[1][2] = tensor[2][1] = inertia[3];
tensor[0][2] = tensor[2][0] = inertia[4];
tensor[0][1] = tensor[1][0] = inertia[5];
int ierror = MathExtra::jacobi(tensor,bonus[nlocal_bonus].inertia,evectors);
if (ierror) error->one(FLERR,"Insufficient Jacobi rotations for triangle");
double ex_space[3],ey_space[3],ez_space[3];
ex_space[0] = evectors[0][0];
ex_space[1] = evectors[1][0];
ex_space[2] = evectors[2][0];
ey_space[0] = evectors[0][1];
ey_space[1] = evectors[1][1];
ey_space[2] = evectors[2][1];
ez_space[0] = evectors[0][2];
ez_space[1] = evectors[1][2];
ez_space[2] = evectors[2][2];
// enforce 3 orthogonal vectors as a right-handed coordinate system
// flip 3rd vector if needed
MathExtra::cross3(ex_space,ey_space,norm);
if (MathExtra::dot3(norm,ez_space) < 0.0) MathExtra::negate3(ez_space);
// create initial quaternion
MathExtra::exyz_to_q(ex_space,ey_space,ez_space,bonus[nlocal_bonus].quat);
// bonus c1,c2,c3 = displacement of c1,c2,c3 from centroid
// in basis of principal axes
double disp[3];
MathExtra::sub3(c1,centroid,disp);
MathExtra::transpose_matvec(ex_space,ey_space,ez_space,
disp,bonus[nlocal_bonus].c1);
MathExtra::sub3(c2,centroid,disp);
MathExtra::transpose_matvec(ex_space,ey_space,ez_space,
disp,bonus[nlocal_bonus].c2);
MathExtra::sub3(c3,centroid,disp);
MathExtra::transpose_matvec(ex_space,ey_space,ez_space,
disp,bonus[nlocal_bonus].c3);
bonus[nlocal_bonus].ilocal = m;
tri[m] = nlocal_bonus++;
}
/* ----------------------------------------------------------------------
unpack one tri from Velocities section of data file
------------------------------------------------------------------------- */
void AtomVecTri::data_vel(int m, char **values)
{
v[m][0] = atof(values[0]);
v[m][1] = atof(values[1]);
v[m][2] = atof(values[2]);
angmom[m][0] = atof(values[3]);
angmom[m][1] = atof(values[4]);
angmom[m][2] = atof(values[5]);
}
/* ----------------------------------------------------------------------
unpack hybrid quantities from one tri in Velocities section of data file
------------------------------------------------------------------------- */
int AtomVecTri::data_vel_hybrid(int m, char **values)
{
angmom[m][0] = atof(values[0]);
angmom[m][1] = atof(values[1]);
angmom[m][2] = atof(values[2]);
return 3;
}
/* ----------------------------------------------------------------------
return # of bytes of allocated memory
------------------------------------------------------------------------- */
bigint AtomVecTri::memory_usage()
{
bigint bytes = 0;
if (atom->memcheck("tag")) bytes += memory->usage(tag,nmax);
if (atom->memcheck("type")) bytes += memory->usage(type,nmax);
if (atom->memcheck("mask")) bytes += memory->usage(mask,nmax);
if (atom->memcheck("image")) bytes += memory->usage(image,nmax);
if (atom->memcheck("x")) bytes += memory->usage(x,nmax,3);
if (atom->memcheck("v")) bytes += memory->usage(v,nmax,3);
if (atom->memcheck("f")) bytes += memory->usage(f,nmax*comm->nthreads,3);
if (atom->memcheck("molecule")) bytes += memory->usage(molecule,nmax);
if (atom->memcheck("rmass")) bytes += memory->usage(rmass,nmax);
if (atom->memcheck("angmom")) bytes += memory->usage(angmom,nmax,3);
if (atom->memcheck("torque")) bytes += memory->usage(torque,nmax*comm->nthreads,3);
if (atom->memcheck("tri")) bytes += memory->usage(tri,nmax);
bytes += nmax_bonus*sizeof(Bonus);
return bytes;
}