forked from lijiext/lammps
320 lines
8.3 KiB
C++
320 lines
8.3 KiB
C++
/***************************************************************************
|
|
atom.cpp
|
|
-------------------
|
|
W. Michael Brown (ORNL)
|
|
|
|
Class for particle data management
|
|
|
|
__________________________________________________________________________
|
|
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
|
__________________________________________________________________________
|
|
|
|
begin :
|
|
email : brownw@ornl.gov
|
|
***************************************************************************/
|
|
|
|
#include "lal_atom.h"
|
|
|
|
using namespace LAMMPS_AL;
|
|
#define AtomT Atom<numtyp,acctyp>
|
|
|
|
template <class numtyp, class acctyp>
|
|
AtomT::Atom() : _compiled(false),_allocated(false),
|
|
_max_gpu_bytes(0) {
|
|
#ifdef USE_CUDPP
|
|
sort_config.op = CUDPP_ADD;
|
|
sort_config.datatype = CUDPP_UINT;
|
|
sort_config.algorithm = CUDPP_SORT_RADIX;
|
|
sort_config.options = CUDPP_OPTION_KEY_VALUE_PAIRS;
|
|
#endif
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
int AtomT::bytes_per_atom() const {
|
|
int id_space=0;
|
|
if (_gpu_nbor==1)
|
|
id_space=2;
|
|
else if (_gpu_nbor==2)
|
|
id_space=4;
|
|
int bytes=4*sizeof(numtyp)+id_space*sizeof(int);
|
|
if (_rot)
|
|
bytes+=4*sizeof(numtyp);
|
|
if (_charge)
|
|
bytes+=sizeof(numtyp);
|
|
return bytes;
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
bool AtomT::alloc(const int nall) {
|
|
_max_atoms=static_cast<int>(static_cast<double>(nall)*1.10);
|
|
|
|
bool success=true;
|
|
|
|
// Ignore host/device transfers?
|
|
_host_view=false;
|
|
if (dev->shared_memory()) {
|
|
_host_view=true;
|
|
#ifdef GPU_CAST
|
|
assert(0==1);
|
|
#endif
|
|
}
|
|
|
|
// Allocate storage for CUDPP sort
|
|
#ifdef USE_CUDPP
|
|
if (_gpu_nbor==1) {
|
|
CUDPPResult result = cudppPlan(&sort_plan, sort_config, _max_atoms, 1, 0);
|
|
if (CUDPP_SUCCESS != result)
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
// --------------------------- Device allocations
|
|
int gpu_bytes=0;
|
|
success=success && (x.alloc(_max_atoms*4,*dev,UCL_WRITE_OPTIMIZED,
|
|
UCL_READ_ONLY)==UCL_SUCCESS);
|
|
#ifdef GPU_CAST
|
|
success=success && (x_cast.alloc(_max_atoms*3,*dev,UCL_READ_ONLY)==
|
|
UCL_SUCCESS);
|
|
success=success && (type_cast.alloc(_max_atoms,*dev,UCL_READ_ONLY)==
|
|
UCL_SUCCESS);
|
|
gpu_bytes+=x_cast.device.row_bytes()+type_cast.device.row_bytes();
|
|
#endif
|
|
|
|
if (_charge && _host_view==false) {
|
|
success=success && (q.alloc(_max_atoms,*dev,UCL_WRITE_OPTIMIZED,
|
|
UCL_READ_ONLY)==UCL_SUCCESS);
|
|
gpu_bytes+=q.device.row_bytes();
|
|
}
|
|
if (_rot && _host_view==false) {
|
|
success=success && (quat.alloc(_max_atoms*4,*dev,UCL_WRITE_OPTIMIZED,
|
|
UCL_READ_ONLY)==UCL_SUCCESS);
|
|
gpu_bytes+=quat.device.row_bytes();
|
|
}
|
|
|
|
if (_gpu_nbor>0) {
|
|
if (_bonds) {
|
|
success=success && (dev_tag.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_tag.row_bytes();
|
|
}
|
|
if (_gpu_nbor==1) {
|
|
success=success && (dev_cell_id.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_cell_id.row_bytes();
|
|
} else {
|
|
success=success && (host_particle_id.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
success=success &&
|
|
(host_cell_id.alloc(_max_atoms,*dev,UCL_NOT_PINNED)==UCL_SUCCESS);
|
|
}
|
|
if (_gpu_nbor==2 && _host_view)
|
|
dev_particle_id.view(host_particle_id);
|
|
else
|
|
success=success && (dev_particle_id.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_particle_id.row_bytes();
|
|
}
|
|
|
|
gpu_bytes+=x.device.row_bytes();
|
|
if (gpu_bytes>_max_gpu_bytes)
|
|
_max_gpu_bytes=gpu_bytes;
|
|
|
|
_allocated=true;
|
|
return success;
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
bool AtomT::add_fields(const bool charge, const bool rot,
|
|
const int gpu_nbor, const bool bonds) {
|
|
bool success=true;
|
|
// Ignore host/device transfers?
|
|
int gpu_bytes=0;
|
|
|
|
if (charge && _charge==false) {
|
|
_charge=true;
|
|
_other=true;
|
|
if (_host_view==false) {
|
|
success=success && (q.alloc(_max_atoms,*dev,UCL_WRITE_OPTIMIZED,
|
|
UCL_READ_ONLY)==UCL_SUCCESS);
|
|
gpu_bytes+=q.device.row_bytes();
|
|
}
|
|
}
|
|
|
|
if (rot && _rot==false) {
|
|
_rot=true;
|
|
_other=true;
|
|
if (_host_view==false) {
|
|
success=success && (quat.alloc(_max_atoms*4,*dev,UCL_WRITE_OPTIMIZED,
|
|
UCL_READ_ONLY)==UCL_SUCCESS);
|
|
gpu_bytes+=quat.device.row_bytes();
|
|
}
|
|
}
|
|
|
|
if (bonds && _bonds==false) {
|
|
_bonds=true;
|
|
if (_bonds && _gpu_nbor>0) {
|
|
success=success && (dev_tag.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_tag.row_bytes();
|
|
}
|
|
}
|
|
|
|
if (gpu_nbor>0 && _gpu_nbor==0) {
|
|
_gpu_nbor=gpu_nbor;
|
|
#ifdef USE_CUDPP
|
|
if (_gpu_nbor==1) {
|
|
CUDPPResult result = cudppPlan(&sort_plan, sort_config, _max_atoms, 1, 0);
|
|
if (CUDPP_SUCCESS != result)
|
|
return false;
|
|
}
|
|
#endif
|
|
success=success && (dev_particle_id.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_particle_id.row_bytes();
|
|
if (_bonds) {
|
|
success=success && (dev_tag.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_tag.row_bytes();
|
|
}
|
|
if (_gpu_nbor==1) {
|
|
success=success && (dev_cell_id.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
gpu_bytes+=dev_cell_id.row_bytes();
|
|
} else {
|
|
success=success && (host_particle_id.alloc(_max_atoms,*dev)==UCL_SUCCESS);
|
|
success=success &&
|
|
(host_cell_id.alloc(_max_atoms,*dev,UCL_NOT_PINNED)==UCL_SUCCESS);
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
bool AtomT::init(const int nall, const bool charge, const bool rot,
|
|
UCL_Device &devi, const int gpu_nbor, const bool bonds) {
|
|
clear();
|
|
|
|
bool success=true;
|
|
_x_avail=false;
|
|
_q_avail=false;
|
|
_quat_avail=false;
|
|
_resized=false;
|
|
_gpu_nbor=gpu_nbor;
|
|
_bonds=bonds;
|
|
_charge=charge;
|
|
_rot=rot;
|
|
_other=_charge || _rot;
|
|
dev=&devi;
|
|
_time_transfer=0;
|
|
|
|
// Initialize atom and nbor data
|
|
int ef_nall=nall;
|
|
if (ef_nall==0)
|
|
ef_nall=2000;
|
|
|
|
// Initialize timers for the selected device
|
|
time_pos.init(*dev);
|
|
time_q.init(*dev);
|
|
time_quat.init(*dev);
|
|
time_pos.zero();
|
|
time_q.zero();
|
|
time_quat.zero();
|
|
_time_cast=0.0;
|
|
|
|
#ifdef GPU_CAST
|
|
compile_kernels(*dev);
|
|
#endif
|
|
|
|
return success && alloc(ef_nall);
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
void AtomT::clear_resize() {
|
|
if (!_allocated)
|
|
return;
|
|
_allocated=false;
|
|
|
|
x.clear();
|
|
if (_charge)
|
|
q.clear();
|
|
if (_rot)
|
|
quat.clear();
|
|
|
|
dev_cell_id.clear();
|
|
dev_particle_id.clear();
|
|
dev_tag.clear();
|
|
#ifdef GPU_CAST
|
|
x_cast.clear();
|
|
type_cast.clear();
|
|
#endif
|
|
|
|
#ifdef USE_CUDPP
|
|
if (_gpu_nbor==1) cudppDestroyPlan(sort_plan);
|
|
#endif
|
|
|
|
if (_gpu_nbor==2) {
|
|
host_particle_id.clear();
|
|
host_cell_id.clear();
|
|
}
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
void AtomT::clear() {
|
|
_max_gpu_bytes=0;
|
|
if (!_allocated)
|
|
return;
|
|
|
|
time_pos.clear();
|
|
time_q.clear();
|
|
time_quat.clear();
|
|
clear_resize();
|
|
|
|
#ifdef GPU_CAST
|
|
if (_compiled) {
|
|
k_cast_x.clear();
|
|
delete atom_program;
|
|
_compiled=false;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <class numtyp, class acctyp>
|
|
double AtomT::host_memory_usage() const {
|
|
int atom_bytes=4;
|
|
if (_charge)
|
|
atom_bytes+=1;
|
|
if (_rot)
|
|
atom_bytes+=4;
|
|
return _max_atoms*atom_bytes*sizeof(numtyp)+sizeof(Atom<numtyp,acctyp>);
|
|
}
|
|
|
|
// Sort arrays for neighbor list calculation
|
|
template <class numtyp, class acctyp>
|
|
void AtomT::sort_neighbor(const int num_atoms) {
|
|
#ifdef USE_CUDPP
|
|
CUDPPResult result = cudppSort(sort_plan, (unsigned *)dev_cell_id.begin(),
|
|
(int *)dev_particle_id.begin(),
|
|
8*sizeof(unsigned), num_atoms);
|
|
if (CUDPP_SUCCESS != result) {
|
|
printf("Error in cudppSort\n");
|
|
UCL_GERYON_EXIT;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef GPU_CAST
|
|
#if defined(USE_OPENCL)
|
|
#include "atom_cl.h"
|
|
#elif defined(USE_CUDART)
|
|
const char *atom=0;
|
|
#else
|
|
#include "atom_cubin.h"
|
|
#endif
|
|
|
|
template <class numtyp, class acctyp>
|
|
void AtomT::compile_kernels(UCL_Device &dev) {
|
|
std::string flags = "-D"+std::string(OCL_VENDOR);
|
|
atom_program=new UCL_Program(dev);
|
|
atom_program->load_string(atom,flags);
|
|
k_cast_x.set_function(*atom_program,"kernel_cast_x");
|
|
_compiled=true;
|
|
}
|
|
|
|
#endif
|
|
|
|
template class Atom<PRECISION,ACC_PRECISION>;
|
|
|