lammps/lib/cuda/compute_temp_cuda.cu

127 lines
4.9 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdio.h>
#define MY_PREFIX compute_temp_cuda
#include "cuda_shared.h"
#include "cuda_common.h"
#include "crm_cuda_utils.cu"
#include "compute_temp_cuda_cu.h"
#include "compute_temp_cuda_kernel.cu"
void Cuda_ComputeTempCuda_UpdateBuffer(cuda_shared_data* sdata)
{
int size = (unsigned)((sdata->atom.nlocal + 63) / 64.0) * 6 * sizeof(ENERGY_FLOAT);
if(sdata->buffersize < size) {
MYDBG(printf("Cuda_ComputeTempCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*));
}
void Cuda_ComputeTempCuda_UpdateNmax(cuda_shared_data* sdata)
{
cudaMemcpyToSymbol(MY_AP(mask) , & sdata->atom.mask .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(mass) , & sdata->atom.mass .dev_data, sizeof(V_FLOAT*));
if(sdata->atom.rmass_flag)
cudaMemcpyToSymbol(MY_AP(rmass) , & sdata->atom.rmass.dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(rmass_flag) , & sdata->atom.rmass_flag, sizeof(int));
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int));
cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
}
void Cuda_ComputeTempCuda_Init(cuda_shared_data* sdata)
{
Cuda_ComputeTempCuda_UpdateNmax(sdata);
}
void Cuda_ComputeTempCuda_Vector(cuda_shared_data* sdata, int groupbit, ENERGY_FLOAT* t)
{
//if(sdata->atom.update_nmax) //is most likely not called every timestep, therefore update of constants is necessary
Cuda_ComputeTempCuda_UpdateNmax(sdata);
//if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
//if(sdata->buffer_new)
Cuda_ComputeTempCuda_UpdateBuffer(sdata);
int3 layout = getgrid(sdata->atom.nlocal);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
Cuda_ComputeTempCuda_Vector_Kernel <<< grid, threads, threads.x* 6* sizeof(ENERGY_FLOAT)>>> (groupbit);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Vector: compute_vector Kernel execution failed");
int oldgrid = grid.x * grid.y;
grid.x = 6;
grid.y = 1;
threads.x = 512;
Cuda_ComputeTempCuda_Reduce_Kernel <<< grid, threads, threads.x* sizeof(ENERGY_FLOAT)>>> (oldgrid, t);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Vector: reduce_vector Kernel execution failed");
}
}
void Cuda_ComputeTempCuda_Scalar(cuda_shared_data* sdata, int groupbit, ENERGY_FLOAT* t)
{
//if(sdata->atom.update_nmax) //is most likely not called every timestep, therefore update of constants is necessary
Cuda_ComputeTempCuda_UpdateNmax(sdata);
//if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
//if(sdata->buffer_new)
Cuda_ComputeTempCuda_UpdateBuffer(sdata);
MYDBG(printf("#CUDA ComputeTempCuda_Scalar: %i\n", sdata->atom.nlocal);)
int3 layout = getgrid(sdata->atom.nlocal);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Scalar: pre compute_scalar Kernel");
Cuda_ComputeTempCuda_Scalar_Kernel <<< grid, threads, threads.x* sizeof(ENERGY_FLOAT)>>> (groupbit);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Scalar: compute_scalar Kernel execution failed");
int oldgrid = grid.x * grid.y;
grid.x = 1;
grid.y = 1;
threads.x = 512;
Cuda_ComputeTempCuda_Reduce_Kernel <<< grid, threads, threads.x* sizeof(ENERGY_FLOAT)>>> (oldgrid, t);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_ComputeTempCuda_Scalar: reduce_scalar Kernel execution failed");
}
}