forked from lijiext/lammps
425 lines
12 KiB
C++
425 lines
12 KiB
C++
// -*- c++ -*-
|
|
|
|
// This file is part of the Collective Variables module (Colvars).
|
|
// The original version of Colvars and its updates are located at:
|
|
// https://github.com/Colvars/colvars
|
|
// Please update all Colvars source files before making any changes.
|
|
// If you wish to distribute your changes, please submit them to the
|
|
// Colvars repository at GitHub.
|
|
|
|
#include <cstdlib>
|
|
|
|
#include "colvarmodule.h"
|
|
#include "colvarbias.h"
|
|
#include "colvarbias_alb.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#if _MSC_VER <= 1700
|
|
#define copysign(A,B) _copysign(A,B)
|
|
double fmax(double A, double B) { return ( A > B ? A : B ); }
|
|
double fmin(double A, double B) { return ( A < B ? A : B ); }
|
|
#endif
|
|
#endif
|
|
|
|
/* Note about nomenclature. Force constant is called a coupling
|
|
* constant here to emphasize its changing in the code. Outwards,
|
|
* everything is called a force constant to keep it consistent with
|
|
* the rest of colvars.
|
|
*
|
|
*/
|
|
|
|
colvarbias_alb::colvarbias_alb(char const *key)
|
|
: colvarbias(key), update_calls(0), b_equilibration(true)
|
|
{
|
|
}
|
|
|
|
|
|
int colvarbias_alb::init(std::string const &conf)
|
|
{
|
|
colvarbias::init(conf);
|
|
|
|
enable(f_cvb_scalar_variables);
|
|
|
|
size_t i;
|
|
|
|
// get the initial restraint centers
|
|
colvar_centers.resize(num_variables());
|
|
|
|
means.resize(num_variables());
|
|
ssd.resize(num_variables()); //sum of squares of differences from mean
|
|
|
|
//setup force vectors
|
|
max_coupling_range.resize(num_variables());
|
|
max_coupling_rate.resize(num_variables());
|
|
coupling_accum.resize(num_variables());
|
|
set_coupling.resize(num_variables());
|
|
current_coupling.resize(num_variables());
|
|
coupling_rate.resize(num_variables());
|
|
|
|
enable(f_cvb_apply_force);
|
|
|
|
for (i = 0; i < num_variables(); i++) {
|
|
colvar_centers[i].type(colvars[i]->value());
|
|
//zero moments
|
|
means[i] = ssd[i] = 0;
|
|
|
|
//zero force some of the force vectors that aren't initialized
|
|
coupling_accum[i] = current_coupling[i] = 0;
|
|
|
|
}
|
|
if (get_keyval(conf, "centers", colvar_centers, colvar_centers)) {
|
|
for (i = 0; i < num_variables(); i++) {
|
|
colvar_centers[i].apply_constraints();
|
|
}
|
|
} else {
|
|
colvar_centers.clear();
|
|
cvm::fatal_error("Error: must define the initial centers of adaptive linear bias .\n");
|
|
}
|
|
|
|
if (colvar_centers.size() != num_variables())
|
|
cvm::fatal_error("Error: number of centers does not match "
|
|
"that of collective variables.\n");
|
|
|
|
if (!get_keyval(conf, "UpdateFrequency", update_freq, 0))
|
|
cvm::fatal_error("Error: must set updateFrequency for adaptive linear bias.\n");
|
|
|
|
//we split the time between updating and equilibrating
|
|
update_freq /= 2;
|
|
|
|
if (update_freq <= 1)
|
|
cvm::fatal_error("Error: must set updateFrequency to greater than 2.\n");
|
|
|
|
enable(f_cvb_history_dependent);
|
|
|
|
get_keyval(conf, "outputCenters", b_output_centers, false);
|
|
get_keyval(conf, "outputGradient", b_output_grad, false);
|
|
get_keyval(conf, "outputCoupling", b_output_coupling, true);
|
|
get_keyval(conf, "hardForceRange", b_hard_coupling_range, true);
|
|
|
|
//initial guess
|
|
if (!get_keyval(conf, "forceConstant", set_coupling, set_coupling))
|
|
for (i =0 ; i < num_variables(); i++)
|
|
set_coupling[i] = 0.;
|
|
|
|
//how we're going to increase to that point
|
|
for (i = 0; i < num_variables(); i++)
|
|
coupling_rate[i] = (set_coupling[i] - current_coupling[i]) / update_freq;
|
|
|
|
|
|
if (!get_keyval(conf, "forceRange", max_coupling_range, max_coupling_range)) {
|
|
//set to default
|
|
for (i = 0; i < num_variables(); i++) {
|
|
if (cvm::temperature() > 0)
|
|
max_coupling_range[i] = 3 * cvm::temperature() * cvm::boltzmann();
|
|
else
|
|
max_coupling_range[i] = 3 * cvm::boltzmann();
|
|
}
|
|
}
|
|
|
|
if (!get_keyval(conf, "rateMax", max_coupling_rate, max_coupling_rate)) {
|
|
//set to default
|
|
for (i = 0; i < num_variables(); i++) {
|
|
max_coupling_rate[i] = max_coupling_range[i] / (10 * update_freq);
|
|
}
|
|
}
|
|
|
|
|
|
if (cvm::debug())
|
|
cvm::log(" bias.\n");
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
colvarbias_alb::~colvarbias_alb()
|
|
{
|
|
}
|
|
|
|
|
|
int colvarbias_alb::update()
|
|
{
|
|
|
|
bias_energy = 0.0;
|
|
update_calls++;
|
|
|
|
if (cvm::debug())
|
|
cvm::log("Updating the adaptive linear bias \""+this->name+"\".\n");
|
|
|
|
//log the moments of the CVs
|
|
// Force and energy calculation
|
|
bool finished_equil_flag = 1;
|
|
cvm::real delta;
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
colvar_forces[i] = -1.0 * restraint_force(restraint_convert_k(current_coupling[i], colvars[i]->width),
|
|
colvars[i],
|
|
colvar_centers[i]);
|
|
bias_energy += restraint_potential(restraint_convert_k(current_coupling[i], colvars[i]->width),
|
|
colvars[i],
|
|
colvar_centers[i]);
|
|
|
|
if (!b_equilibration) {
|
|
//Welford, West, and Hanso online variance method
|
|
|
|
delta = static_cast<cvm::real>(colvars[i]->value()) - means[i];
|
|
means[i] += delta / update_calls;
|
|
ssd[i] += delta * (static_cast<cvm::real>(colvars[i]->value()) - means[i]);
|
|
|
|
} else {
|
|
//check if we've reached the setpoint
|
|
cvm::real const coupling_diff = current_coupling[i] - set_coupling[i];
|
|
if ((coupling_rate[i] == 0) ||
|
|
((coupling_diff*coupling_diff) < (coupling_rate[i]*coupling_rate[i]))) {
|
|
finished_equil_flag &= 1; //we continue equilibrating as long as we haven't reached all the set points
|
|
}
|
|
else {
|
|
current_coupling[i] += coupling_rate[i];
|
|
finished_equil_flag = 0;
|
|
}
|
|
|
|
|
|
//update max_coupling_range
|
|
if (!b_hard_coupling_range && fabs(current_coupling[i]) > max_coupling_range[i]) {
|
|
std::ostringstream logStream;
|
|
logStream << "Coupling constant for "
|
|
<< colvars[i]->name
|
|
<< " has exceeded coupling range of "
|
|
<< max_coupling_range[i]
|
|
<< ".\n";
|
|
|
|
max_coupling_range[i] *= 1.25;
|
|
logStream << "Expanding coupling range to " << max_coupling_range[i] << ".\n";
|
|
cvm::log(logStream.str());
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
if (b_equilibration && finished_equil_flag) {
|
|
b_equilibration = false;
|
|
update_calls = 0;
|
|
}
|
|
|
|
|
|
//now we update coupling constant, if necessary
|
|
if (!b_equilibration && update_calls == update_freq) {
|
|
|
|
//use estimated variance to take a step
|
|
cvm::real step_size = 0;
|
|
cvm::real temp;
|
|
|
|
//reset means and sum of squares of differences
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
|
|
temp = 2. * (means[i] / (static_cast<cvm::real> (colvar_centers[i])) - 1) * ssd[i] / (update_calls - 1);
|
|
|
|
if (cvm::temperature() > 0)
|
|
step_size = temp / (cvm::temperature() * cvm::boltzmann());
|
|
else
|
|
step_size = temp / cvm::boltzmann();
|
|
|
|
means[i] = 0;
|
|
ssd[i] = 0;
|
|
|
|
//stochastic if we do that update or not
|
|
if (num_variables() == 1 || rand() < RAND_MAX / ((int) num_variables())) {
|
|
coupling_accum[i] += step_size * step_size;
|
|
current_coupling[i] = set_coupling[i];
|
|
set_coupling[i] += max_coupling_range[i] / sqrt(coupling_accum[i]) * step_size;
|
|
coupling_rate[i] = (set_coupling[i] - current_coupling[i]) / update_freq;
|
|
//set to the minimum rate and then put the sign back on it
|
|
coupling_rate[i] = copysign(fmin(fabs(coupling_rate[i]), max_coupling_rate[i]), coupling_rate[i]);
|
|
} else {
|
|
coupling_rate[i] = 0;
|
|
}
|
|
|
|
}
|
|
|
|
update_calls = 0;
|
|
b_equilibration = true;
|
|
|
|
}
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
int colvarbias_alb::set_state_params(std::string const &conf)
|
|
{
|
|
int error_code = colvarbias::set_state_params(conf);
|
|
|
|
if (error_code != COLVARS_OK) {
|
|
return error_code;
|
|
}
|
|
|
|
if (!get_keyval(conf, "setCoupling", set_coupling))
|
|
cvm::fatal_error("Error: current setCoupling is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "currentCoupling", current_coupling))
|
|
cvm::fatal_error("Error: current setCoupling is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "maxCouplingRange", max_coupling_range))
|
|
cvm::fatal_error("Error: maxCouplingRange is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "couplingRate", coupling_rate))
|
|
cvm::fatal_error("Error: current setCoupling is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "couplingAccum", coupling_accum))
|
|
cvm::fatal_error("Error: couplingAccum is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "mean", means))
|
|
cvm::fatal_error("Error: current mean is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "ssd", ssd))
|
|
cvm::fatal_error("Error: current ssd is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "updateCalls", update_calls))
|
|
cvm::fatal_error("Error: current updateCalls is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "b_equilibration", b_equilibration))
|
|
cvm::fatal_error("Error: current updateCalls is missing from the restart.\n");
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
std::string const colvarbias_alb::get_state_params() const
|
|
{
|
|
std::ostringstream os;
|
|
os << " setCoupling ";
|
|
size_t i;
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << set_coupling[i] << "\n";
|
|
}
|
|
os << " currentCoupling ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << current_coupling[i] << "\n";
|
|
}
|
|
os << " maxCouplingRange ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << max_coupling_range[i] << "\n";
|
|
}
|
|
os << " couplingRate ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << coupling_rate[i] << "\n";
|
|
}
|
|
os << " couplingAccum ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << coupling_accum[i] << "\n";
|
|
}
|
|
os << " mean ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << means[i] << "\n";
|
|
}
|
|
os << " ssd ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << ssd[i] << "\n";
|
|
}
|
|
os << " updateCalls " << update_calls << "\n";
|
|
if (b_equilibration)
|
|
os << " b_equilibration yes\n";
|
|
else
|
|
os << " b_equilibration no\n";
|
|
|
|
return os.str();
|
|
}
|
|
|
|
|
|
std::ostream & colvarbias_alb::write_traj_label(std::ostream &os)
|
|
{
|
|
os << " ";
|
|
|
|
if (b_output_energy)
|
|
os << " E_"
|
|
<< cvm::wrap_string(this->name, cvm::en_width-2);
|
|
|
|
if (b_output_coupling)
|
|
for (size_t i = 0; i < current_coupling.size(); i++) {
|
|
os << " ForceConst_" << i
|
|
<<std::setw(cvm::en_width - 6 - (i / 10 + 1))
|
|
<< "";
|
|
}
|
|
|
|
if (b_output_grad)
|
|
for (size_t i = 0; i < means.size(); i++) {
|
|
os << "Grad_"
|
|
<< cvm::wrap_string(colvars[i]->name, cvm::cv_width - 4);
|
|
}
|
|
|
|
if (b_output_centers)
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
size_t const this_cv_width = (colvars[i]->value()).output_width(cvm::cv_width);
|
|
os << " x0_"
|
|
<< cvm::wrap_string(colvars[i]->name, this_cv_width-3);
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
std::ostream & colvarbias_alb::write_traj(std::ostream &os)
|
|
{
|
|
os << " ";
|
|
|
|
if (b_output_energy)
|
|
os << " "
|
|
<< std::setprecision(cvm::en_prec) << std::setw(cvm::en_width)
|
|
<< bias_energy;
|
|
|
|
if (b_output_coupling)
|
|
for (size_t i = 0; i < current_coupling.size(); i++) {
|
|
os << " "
|
|
<< std::setprecision(cvm::en_prec) << std::setw(cvm::en_width)
|
|
<< current_coupling[i];
|
|
}
|
|
|
|
|
|
if (b_output_centers)
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
os << " "
|
|
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
|
<< colvar_centers[i];
|
|
}
|
|
|
|
if (b_output_grad)
|
|
for (size_t i = 0; i < means.size(); i++) {
|
|
os << " "
|
|
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
|
<< -2.0 * (means[i] / (static_cast<cvm::real>(colvar_centers[i])) - 1) * ssd[i] / (fmax(update_calls, 2.0) - 1);
|
|
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
cvm::real colvarbias_alb::restraint_potential(cvm::real k,
|
|
colvar const *x,
|
|
colvarvalue const &xcenter) const
|
|
{
|
|
return k * (x->value() - xcenter);
|
|
}
|
|
|
|
|
|
colvarvalue colvarbias_alb::restraint_force(cvm::real k,
|
|
colvar const * /* x */,
|
|
colvarvalue const & /* xcenter */) const
|
|
{
|
|
return k;
|
|
}
|
|
|
|
|
|
cvm::real colvarbias_alb::restraint_convert_k(cvm::real k,
|
|
cvm::real dist_measure) const
|
|
{
|
|
return k / dist_measure;
|
|
}
|
|
|