forked from lijiext/lammps
284 lines
8.7 KiB
Fortran
284 lines
8.7 KiB
Fortran
*> \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DSYGS2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, ITYPE, LDA, LDB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
|
|
*> to standard form.
|
|
*>
|
|
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
|
|
*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
|
|
*>
|
|
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
|
|
*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
|
|
*>
|
|
*> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ITYPE
|
|
*> \verbatim
|
|
*> ITYPE is INTEGER
|
|
*> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
|
|
*> = 2 or 3: compute U*A*U**T or L**T *A*L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> symmetric matrix A is stored, and how B has been factorized.
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
*> n by n upper triangular part of A contains the upper
|
|
*> triangular part of the matrix A, and the strictly lower
|
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
|
*> leading n by n lower triangular part of A contains the lower
|
|
*> triangular part of the matrix A, and the strictly upper
|
|
*> triangular part of A is not referenced.
|
|
*>
|
|
*> On exit, if INFO = 0, the transformed matrix, stored in the
|
|
*> same format as A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,N)
|
|
*> The triangular factor from the Cholesky factorization of B,
|
|
*> as returned by DPOTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup doubleSYcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, ITYPE, LDA, LDB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, HALF
|
|
PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER K
|
|
DOUBLE PRECISION AKK, BKK, CT
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DAXPY, DSCAL, DSYR2, DTRMV, DTRSV, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DSYGS2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute inv(U**T)*A*inv(U)
|
|
*
|
|
DO 10 K = 1, N
|
|
*
|
|
* Update the upper triangle of A(k:n,k:n)
|
|
*
|
|
AKK = A( K, K )
|
|
BKK = B( K, K )
|
|
AKK = AKK / BKK**2
|
|
A( K, K ) = AKK
|
|
IF( K.LT.N ) THEN
|
|
CALL DSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
|
|
CT = -HALF*AKK
|
|
CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
|
|
$ LDA )
|
|
CALL DSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
|
|
$ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
|
|
CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
|
|
$ LDA )
|
|
CALL DTRSV( UPLO, 'Transpose', 'Non-unit', N-K,
|
|
$ B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
|
|
END IF
|
|
10 CONTINUE
|
|
ELSE
|
|
*
|
|
* Compute inv(L)*A*inv(L**T)
|
|
*
|
|
DO 20 K = 1, N
|
|
*
|
|
* Update the lower triangle of A(k:n,k:n)
|
|
*
|
|
AKK = A( K, K )
|
|
BKK = B( K, K )
|
|
AKK = AKK / BKK**2
|
|
A( K, K ) = AKK
|
|
IF( K.LT.N ) THEN
|
|
CALL DSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
|
|
CT = -HALF*AKK
|
|
CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
|
|
CALL DSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
|
|
$ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
|
|
CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
|
|
CALL DTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
|
|
$ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
|
|
END IF
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute U*A*U**T
|
|
*
|
|
DO 30 K = 1, N
|
|
*
|
|
* Update the upper triangle of A(1:k,1:k)
|
|
*
|
|
AKK = A( K, K )
|
|
BKK = B( K, K )
|
|
CALL DTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
|
|
$ LDB, A( 1, K ), 1 )
|
|
CT = HALF*AKK
|
|
CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
|
|
CALL DSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
|
|
$ A, LDA )
|
|
CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
|
|
CALL DSCAL( K-1, BKK, A( 1, K ), 1 )
|
|
A( K, K ) = AKK*BKK**2
|
|
30 CONTINUE
|
|
ELSE
|
|
*
|
|
* Compute L**T *A*L
|
|
*
|
|
DO 40 K = 1, N
|
|
*
|
|
* Update the lower triangle of A(1:k,1:k)
|
|
*
|
|
AKK = A( K, K )
|
|
BKK = B( K, K )
|
|
CALL DTRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
|
|
$ A( K, 1 ), LDA )
|
|
CT = HALF*AKK
|
|
CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
|
|
CALL DSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
|
|
$ LDB, A, LDA )
|
|
CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
|
|
CALL DSCAL( K-1, BKK, A( K, 1 ), LDA )
|
|
A( K, K ) = AKK*BKK**2
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of DSYGS2
|
|
*
|
|
END
|