lammps/lib/gpu/lal_pppm.h

197 lines
6.2 KiB
C++

/***************************************************************************
pppm.h
-------------------
W. Michael Brown (ORNL)
Class for PPPM acceleration
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : brownw@ornl.gov
***************************************************************************/
#ifndef LAL_PPPM_H
#define LAL_PPPM_H
#include "mpi.h"
#include "lal_device.h"
#ifdef USE_OPENCL
#include "geryon/ocl_texture.h"
#else
#include "geryon/nvd_texture.h"
#endif
namespace LAMMPS_AL {
template <class numtyp, class acctyp> class Device;
template <class numtyp, class acctyp, class grdtyp, class grdtyp4>
class PPPM {
public:
PPPM();
virtual ~PPPM();
/// Clear any previous data and set up for a new LAMMPS run
/** Success will be:
* - 0 if successfull
* - -1 if fix gpu not found
* - -2 if GPU could not be found
* - -3 if there is an out of memory error
* - -4 if the GPU library was not compiled for GPU
* - -5 Double precision is not supported on card **/
grdtyp * init(const int nlocal, const int nall, FILE *screen, const int order,
const int nxlo_out, const int nylo_out, const int nzlo_out,
const int nxhi_out, const int nyhi_out, const int nzhi_out,
grdtyp **rho_coeff, grdtyp **vd_brick,
const double slab_volfactor, const int nx_pppm,
const int ny_pppm, const int nz_pppm, int &success);
/// Check if there is enough storage for atom arrays and realloc if not
/** \param success set to false if insufficient memory **/
inline void resize_atom(const int inum, const int nall, bool &success) {
if (atom->resize(nall, success)) {
pos_tex.bind_float(atom->dev_x,4);
q_tex.bind_float(atom->dev_q,1);
}
ans->resize(inum,success);
}
/// Check if there is enough storage for local atoms and realloc if not
inline void resize_local(const int inum, bool &success) {
}
/// Clear all host and device data
/** \note This is called at the beginning of the init() routine **/
void clear(const double cpu_time);
/// Returns memory usage on device per atom
int bytes_per_atom() const;
/// Total host memory used by library for pair style
double host_memory_usage() const;
/// Accumulate timers
inline void acc_timers() {
if (device->time_device()) {
ans->acc_timers();
time_in.add_to_total();
time_out.add_to_total();
time_map.add_to_total();
time_rho.add_to_total();
time_interp.add_to_total();
}
}
/// Zero timers
inline void zero_timers() {
atom->zero_timers();
ans->zero_timers();
time_in.zero();
time_out.zero();
time_map.zero();
time_rho.zero();
time_interp.zero();
}
/// Precomputations for charge assignment that can be done asynchronously
inline void precompute(const int ago, const int nlocal, const int nall,
double **host_x, int *host_type, bool &success,
double *charge, double *boxlo, double *prd) {
double delxinv=_nx_pppm/prd[0];
double delyinv=_ny_pppm/prd[1];
double delzinv=_nz_pppm/(prd[2]*_slab_volfactor);
_precompute(ago,nlocal,nall,host_x,host_type,success,charge,boxlo,delxinv,
delyinv,delzinv);
}
/// Returns non-zero if out of bounds atoms
int spread(const int ago, const int nlocal, const int nall, double **host_x,
int *host_type, bool &success, double *charge, double *boxlo,
const double delxinv, const double delyinv, const double delzinv);
void interp(const grdtyp qqrd2e_scale);
// -------------------------- DEVICE DATA -------------------------
/// Device Properties and Atom and Neighbor storage
Device<numtyp,acctyp> *device;
/// Geryon device
UCL_Device *ucl_device;
/// Device Timers
UCL_Timer time_in, time_out, time_map, time_rho, time_interp;
/// LAMMPS pointer for screen output
FILE *screen;
// --------------------------- ATOM DATA --------------------------
/// Atom Data
Atom<numtyp,acctyp> *atom;
// --------------------------- GRID DATA --------------------------
UCL_H_Vec<grdtyp> h_brick, h_vd_brick;
UCL_D_Vec<grdtyp> d_brick;
// Count of number of atoms assigned to each grid point
UCL_D_Vec<int> d_brick_counts;
// Atoms assigned to each grid point
UCL_D_Vec<grdtyp4> d_brick_atoms;
// Error checking for out of bounds atoms
UCL_D_Vec<int> d_error_flag;
UCL_H_Vec<int> h_error_flag;
// Number of grid points in brick (including ghost)
int _npts_x, _npts_y, _npts_z, _npts_yx;
// Number of local grid points in brick
int _nlocal_x, _nlocal_y, _nlocal_z, _nlocal_yx, _atom_stride;
// -------------------------- SPLINE DATA -------------------------
UCL_D_Vec<grdtyp> d_rho_coeff;
int _order, _nlower, _nupper, _order_m_1, _order2;
int _nxlo_out, _nylo_out, _nzlo_out, _nxhi_out, _nyhi_out, _nzhi_out;
// ------------------------ FORCE/ENERGY DATA -----------------------
Answer<numtyp,acctyp> *ans;
// ------------------------- DEVICE KERNELS -------------------------
UCL_Program *pppm_program;
UCL_Kernel k_particle_map, k_make_rho, k_interp;
inline int block_size() { return _block_size; }
// --------------------------- TEXTURES -----------------------------
UCL_Texture pos_tex;
UCL_Texture q_tex;
protected:
bool _allocated, _compiled, _precompute_done;
int _block_size, _block_pencils, _pencil_size, _max_brick_atoms, _max_atoms;
double _max_bytes, _max_an_bytes;
double _cpu_idle_time;
grdtyp _brick_x, _brick_y, _brick_z, _delxinv, _delyinv, _delzinv;
double _slab_volfactor;
int _nx_pppm, _ny_pppm, _nz_pppm;
void compile_kernels(UCL_Device &dev);
void _precompute(const int ago, const int nlocal, const int nall,
double **host_x, int *host_type, bool &success,
double *charge, double *boxlo, const double delxinv,
const double delyinv, const double delzinv);
};
}
#endif