forked from lijiext/lammps
652 lines
16 KiB
C++
652 lines
16 KiB
C++
/*
|
|
*_________________________________________________________________________*
|
|
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
|
|
* DESCRIPTION: SEE READ-ME *
|
|
* FILE NAME: poemstree.h *
|
|
* AUTHORS: See Author List *
|
|
* GRANTS: See Grants List *
|
|
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
|
|
* LICENSE: Please see License Agreement *
|
|
* DOWNLOAD: Free at www.rpi.edu/~anderk5 *
|
|
* ADMINISTRATOR: Prof. Kurt Anderson *
|
|
* Computational Dynamics Lab *
|
|
* Rensselaer Polytechnic Institute *
|
|
* 110 8th St. Troy NY 12180 *
|
|
* CONTACT: anderk5@rpi.edu *
|
|
*_________________________________________________________________________*/
|
|
|
|
#ifndef TREE_H
|
|
#define TREE_H
|
|
|
|
#include "poemstreenode.h"
|
|
#include "poemsnodelib.h"
|
|
|
|
//tree.h
|
|
//***********
|
|
//***********
|
|
// constants to indicate the balance factor of a node
|
|
const int leftheavy = -1;
|
|
const int balanced = 0;
|
|
const int rightheavy = 1;
|
|
|
|
|
|
|
|
class Tree{
|
|
protected:
|
|
// pointer to tree root and node most recently accessed
|
|
TreeNode *root;
|
|
TreeNode *current;
|
|
|
|
// number of elements in the tree
|
|
int size;
|
|
|
|
//?????? the below are acuatually global functions right now
|
|
//memory allocation/deallocation
|
|
//TreeNode *GetTreeNode(const int& item,
|
|
// TreeNode *lptr,TreeNode *rptr);
|
|
//void FreeTreeNode(TreeNode *p);
|
|
|
|
// used by the copy constructor and assignment operator
|
|
TreeNode *CopyTree(TreeNode *t);
|
|
|
|
// used by insert and delete method to re-establish
|
|
// the avl conditions after a node is added or deleted
|
|
// from a subtree
|
|
void SingleRotateLeft (TreeNode* &p);
|
|
void SingleRotateRight (TreeNode* &p);
|
|
void DoubleRotateLeft (TreeNode* &p);
|
|
void DoubleRotateRight (TreeNode* &p);
|
|
void UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor);
|
|
void UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor);
|
|
|
|
|
|
// used by destructor, assignment operator and ClearList
|
|
void DeleteTree(TreeNode *t);
|
|
void ClearTree(TreeNode * &t);
|
|
|
|
// locate a node with data item and its parent in tree
|
|
// used by Find and Delete
|
|
TreeNode *FindNode(const int& item, TreeNode* & parent) const;
|
|
|
|
public:
|
|
// constructor, destructor
|
|
Tree(void);
|
|
//Tree(const Tree& tree); //????????need to write this
|
|
~Tree(void)
|
|
{
|
|
ClearTree(root);
|
|
}; //?????????????need to write this
|
|
|
|
// assignment operator
|
|
Tree& operator= (const Tree& rhs);
|
|
|
|
// standard list handling methods
|
|
int Find(int& item);
|
|
void * GetAuxData(int item) { return (void *)(FindNode(item, root)->GetAuxData());}
|
|
void Insert(const int& item, const int& data, void * AuxData = NULL);
|
|
void Delete(const int& item);
|
|
void AVLInsert(TreeNode* &tree, TreeNode* newNode, int &reviseBalanceFactor);
|
|
//void AVLDelete(TreeNode* &tree, TreeNode* newNode, int &reviseBalanceFactor);
|
|
void ClearList(void);
|
|
//int ListEmpty(void) const;
|
|
//int ListSize(void) const;
|
|
|
|
// tree specific methods
|
|
void Update(const int& item);
|
|
TreeNode *GetRoot(void) const;
|
|
|
|
//friend class DCASolver;
|
|
};
|
|
|
|
|
|
// constructor
|
|
Tree::Tree(void)
|
|
{
|
|
root = 0; // was NULL
|
|
current = 0; // was NULL
|
|
size = 0;
|
|
}
|
|
|
|
|
|
|
|
// return root pointer
|
|
TreeNode *Tree::GetRoot(void) const
|
|
{
|
|
return root;
|
|
}
|
|
|
|
|
|
// assignment operator
|
|
Tree& Tree::operator = (const Tree& rhs)
|
|
{
|
|
// can't copy a tree to itself
|
|
if (this == &rhs)
|
|
return *this;
|
|
|
|
// clear current tree. copy new tree into current object
|
|
ClearList();
|
|
root = CopyTree(rhs.root);
|
|
|
|
// assign current to root and set the tree size
|
|
current = root;
|
|
size = rhs.size;
|
|
|
|
// return reference to current object
|
|
return *this;
|
|
}
|
|
|
|
// search for data item in the tree. if found, return its node
|
|
// address and a pointer to its parent; otherwise, return NULL
|
|
TreeNode *Tree::FindNode(const int& item,
|
|
TreeNode* & parent) const
|
|
{
|
|
// cycle t through the tree starting with root
|
|
TreeNode *t = root;
|
|
|
|
// the parent of the root is NULL
|
|
parent = NULL;
|
|
|
|
// terminate on empty subtree
|
|
while(t != NULL)
|
|
{
|
|
// stop on a match
|
|
if (item == t->data)
|
|
break;
|
|
else
|
|
{
|
|
// update the parent pointer and move right of left
|
|
parent = t;
|
|
if (item < t->data)
|
|
t = t->left;
|
|
else
|
|
t = t->right;
|
|
}
|
|
}
|
|
|
|
// return pointer to node; NULL if not found
|
|
return t;
|
|
}
|
|
|
|
// search for item. if found, assign the node data to item
|
|
int Tree::Find(int& item)
|
|
{
|
|
// we use FindNode, which requires a parent parameter
|
|
TreeNode *parent;
|
|
|
|
// search tree for item. assign matching node to current
|
|
current = FindNode (item, parent);
|
|
|
|
// if item found, assign data to item and return True
|
|
if (current != NULL)
|
|
{
|
|
item = current->data;
|
|
return (int)current->GetAuxData();
|
|
}
|
|
else
|
|
// item not found in the tree. return False
|
|
return 0;
|
|
}
|
|
|
|
|
|
void Tree::Insert(const int& item, const int& data, void * AuxData)
|
|
{
|
|
// declare AVL tree node pointer; using base class method
|
|
// GetRoot. cast to larger node and assign root pointer
|
|
TreeNode *treeRoot, *newNode;
|
|
treeRoot = GetRoot();
|
|
|
|
// flag used by AVLInsert to rebalance nodes
|
|
int reviseBalanceFactor = 0;
|
|
|
|
// get a new AVL tree node with empty pointer fields
|
|
newNode = GetTreeNode(item,NULL,NULL);
|
|
newNode->data = data;
|
|
newNode->SetAuxData(AuxData);
|
|
// call recursive routine to actually insert the element
|
|
AVLInsert(treeRoot, newNode, reviseBalanceFactor);
|
|
|
|
// assign new values to data members in the base class
|
|
root = treeRoot;
|
|
current = newNode;
|
|
size++;
|
|
|
|
|
|
|
|
|
|
|
|
////the below is for an unbalance insert algorithm
|
|
/*
|
|
// t is the current node in transversal, parent the pervios node
|
|
TreeNode *t = root, *parent = NULL, *newNode;
|
|
|
|
// terminate on empty subtree
|
|
while(t != NULL)
|
|
{
|
|
// update the parent pointer. then go left or right
|
|
parent = t;
|
|
if (item < t->data)
|
|
t = t->left;
|
|
else
|
|
t = t->right;
|
|
}
|
|
|
|
// create the new leaf node
|
|
newNode = GetTreeNode(item,NULL,NULL);
|
|
|
|
// if parent is NULL, insert as a root node
|
|
if (parent == NULL)
|
|
root = newNode;
|
|
|
|
// if item < parent->data. insert as left child
|
|
else if (item < parent->data)
|
|
parent->left = newNode;
|
|
|
|
else
|
|
// if item >= parent->data. insert as right child
|
|
parent->right = newNode;
|
|
// assign current as address of new node and increment size
|
|
current = newNode;
|
|
size++;
|
|
*/
|
|
}
|
|
|
|
void Tree::AVLInsert(TreeNode *&tree, TreeNode *newNode, int &reviseBalanceFactor)
|
|
{
|
|
// flag indicates change node's balanceFactor will occur
|
|
int rebalanceCurrNode;
|
|
|
|
// scan reaches an empty tree; time to insert the new node
|
|
if (tree == NULL)
|
|
{
|
|
// update the parent to point at newNode
|
|
tree = newNode;
|
|
|
|
// assign balanceFactor = 0 to new node
|
|
tree->balanceFactor = balanced;
|
|
// broadcast message; balanceFactor value is modified
|
|
reviseBalanceFactor = 1;
|
|
}
|
|
// recursively move left if new data < current data
|
|
else if (newNode->data < tree->data)
|
|
{
|
|
AVLInsert(tree->left,newNode,rebalanceCurrNode);
|
|
// check if balanceFactor must be updated.
|
|
if (rebalanceCurrNode)
|
|
{
|
|
// went left from node that is left heavy. will
|
|
// violate AVL condition; use rotation (case 3)
|
|
if (tree->balanceFactor == leftheavy)
|
|
UpdateLeftTree(tree,reviseBalanceFactor);
|
|
|
|
// went left from balanced node. will create
|
|
// node left on the left. AVL condition OK (case 1)
|
|
else if (tree->balanceFactor == balanced)
|
|
{
|
|
tree->balanceFactor = leftheavy;
|
|
reviseBalanceFactor = 1;
|
|
}
|
|
// went left from node that is right heavy. will
|
|
// balance the node. AVL condition OK (case 2)
|
|
else
|
|
{
|
|
tree->balanceFactor = balanced;
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
}
|
|
else
|
|
// no balancing occurs; do not ask previous nodes
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
// otherwise recursively move right
|
|
else
|
|
{
|
|
AVLInsert(tree->right, newNode, rebalanceCurrNode);
|
|
// check if balanceFactor must be updated.
|
|
if (rebalanceCurrNode)
|
|
{
|
|
// went right from node that is left heavy. wil;
|
|
// balance the node. AVL condition OK (case 2)
|
|
if (tree->balanceFactor == leftheavy)
|
|
{
|
|
// scanning right subtree. node heavy on left.
|
|
// the node will become balanced
|
|
tree->balanceFactor = balanced;
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
// went right from balanced node. will create
|
|
// node heavy on the right. AVL condition OK (case 1)
|
|
else if (tree->balanceFactor == balanced)
|
|
{
|
|
// node is balanced; will become heavy on right
|
|
tree->balanceFactor = rightheavy;
|
|
reviseBalanceFactor = 1;
|
|
}
|
|
// went right from node that is right heavy. will
|
|
// violate AVL condition; use rotation (case 3)
|
|
else
|
|
UpdateRightTree(tree, reviseBalanceFactor);
|
|
}
|
|
else
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
}
|
|
|
|
|
|
void Tree::UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor)
|
|
{
|
|
TreeNode *lc;
|
|
|
|
lc = p->Left(); // left subtree is also heavy
|
|
if (lc->balanceFactor == leftheavy)
|
|
{
|
|
SingleRotateRight(p);
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
// is right subtree heavy?
|
|
else if (lc->balanceFactor == rightheavy)
|
|
{
|
|
// make a double rotation
|
|
DoubleRotateRight(p);
|
|
// root is now balance
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
}
|
|
|
|
void Tree::UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor)
|
|
{
|
|
TreeNode *lc;
|
|
|
|
lc = p->Right(); // right subtree is also heavy
|
|
if (lc->balanceFactor == rightheavy)
|
|
{
|
|
SingleRotateLeft(p);
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
// is left subtree heavy?
|
|
else if (lc->balanceFactor == leftheavy)
|
|
{
|
|
// make a double rotation
|
|
DoubleRotateLeft(p);
|
|
// root is now balance
|
|
reviseBalanceFactor = 0;
|
|
}
|
|
}
|
|
|
|
void Tree::SingleRotateRight (TreeNode* &p)
|
|
{
|
|
// the left subtree of p is heavy
|
|
TreeNode *lc;
|
|
|
|
// assign the left subtree to lc
|
|
lc = p->Left();
|
|
|
|
// update the balance factor for parent and left child
|
|
p->balanceFactor = balanced;
|
|
lc->balanceFactor = balanced;
|
|
|
|
// any right subtree st of lc must continue as right
|
|
// subtree of lc. do by making it a left subtree of p
|
|
p->left = lc->Right();
|
|
|
|
// rotate p (larger node) into right subtree of lc
|
|
// make lc the pivot node
|
|
lc->right = p;
|
|
p = lc;
|
|
}
|
|
|
|
void Tree::SingleRotateLeft (TreeNode* &p)
|
|
{
|
|
// the right subtree of p is heavy
|
|
TreeNode *lc;
|
|
|
|
// assign the left subtree to lc
|
|
lc = p->Right();
|
|
|
|
// update the balance factor for parent and left child
|
|
p->balanceFactor = balanced;
|
|
lc->balanceFactor = balanced;
|
|
|
|
// any right subtree st of lc must continue as right
|
|
// subtree of lc. do by making it a left subtree of p
|
|
p->right = lc->Left();
|
|
|
|
// rotate p (larger node) into right subtree of lc
|
|
// make lc the pivot node
|
|
lc->left = p;
|
|
p = lc;
|
|
}
|
|
|
|
// double rotation right about node p
|
|
void Tree::DoubleRotateRight (TreeNode* &p)
|
|
{
|
|
// two subtrees that are rotated
|
|
TreeNode *lc, *np;
|
|
|
|
// in the tree, node(lc) <= node(np) < node(p)
|
|
lc = p->Left(); // lc is left child of parent
|
|
np = lc->Right(); // np is right child of lc
|
|
|
|
// update balance factors for p, lc, and np
|
|
if (np->balanceFactor == rightheavy)
|
|
{
|
|
p->balanceFactor = balanced;
|
|
lc->balanceFactor = rightheavy;
|
|
}
|
|
else if (np->balanceFactor == balanced)
|
|
{
|
|
p->balanceFactor = balanced;
|
|
lc->balanceFactor = balanced;
|
|
}
|
|
else
|
|
{
|
|
p->balanceFactor = rightheavy;
|
|
lc->balanceFactor = balanced;
|
|
}
|
|
np->balanceFactor = balanced;
|
|
|
|
// before np replaces the parent p, take care of subtrees
|
|
// detach old children and attach new children
|
|
lc->right = np->Left();
|
|
np->left = lc;
|
|
p->left = np->Right();
|
|
np->right = p;
|
|
p = np;
|
|
}
|
|
|
|
void Tree::DoubleRotateLeft (TreeNode* &p)
|
|
{
|
|
// two subtrees that are rotated
|
|
TreeNode *lc, *np;
|
|
|
|
// in the tree, node(lc) <= node(np) < node(p)
|
|
lc = p->Right(); // lc is right child of parent
|
|
np = lc->Left(); // np is left child of lc
|
|
|
|
// update balance factors for p, lc, and np
|
|
if (np->balanceFactor == leftheavy)
|
|
{
|
|
p->balanceFactor = balanced;
|
|
lc->balanceFactor = leftheavy;
|
|
}
|
|
else if (np->balanceFactor == balanced)
|
|
{
|
|
p->balanceFactor = balanced;
|
|
lc->balanceFactor = balanced;
|
|
}
|
|
else
|
|
{
|
|
p->balanceFactor = leftheavy;
|
|
lc->balanceFactor = balanced;
|
|
}
|
|
np->balanceFactor = balanced;
|
|
|
|
// before np replaces the parent p, take care of subtrees
|
|
// detach old children and attach new children
|
|
lc->left = np->Right();
|
|
np->right = lc;
|
|
p->right = np->Left();
|
|
np->left = p;
|
|
p = np;
|
|
}
|
|
|
|
// if item is in the tree, delete it
|
|
void Tree::Delete(const int& item)
|
|
{
|
|
// DNodePtr = pointer to node D that is deleted
|
|
// PNodePtr = pointer to parent P of node D
|
|
// RNodePtr = pointer to node R that replaces D
|
|
TreeNode *DNodePtr, *PNodePtr, *RNodePtr;
|
|
|
|
// search for a node containing data value item. obtain its
|
|
// node adress and that of its parent
|
|
if ((DNodePtr = FindNode (item, PNodePtr)) == NULL)
|
|
return;
|
|
|
|
// If D has NULL pointer, the
|
|
// replacement node is the one on the other branch
|
|
if (DNodePtr->right == NULL)
|
|
RNodePtr = DNodePtr->left;
|
|
else if (DNodePtr->left == NULL)
|
|
RNodePtr = DNodePtr->right;
|
|
// Both pointers of DNodePtr are non-NULL
|
|
else
|
|
{
|
|
// Find and unlink replacement node for D
|
|
// Starting on the left branch of node D,
|
|
// find node whose data value is the largest of all
|
|
// nodes whose values are less than the value in D
|
|
// Unlink the node from the tree
|
|
|
|
// PofRNodePtr = pointer to parent of replacement node
|
|
TreeNode *PofRNodePtr = DNodePtr;
|
|
|
|
// frist possible replacement is left child D
|
|
RNodePtr = DNodePtr->left;
|
|
|
|
// descend down right subtree of the left child of D
|
|
// keeping a record of current node and its parent.
|
|
// when we stop, we have found the replacement
|
|
while (RNodePtr->right != NULL)
|
|
{
|
|
PofRNodePtr = RNodePtr;
|
|
RNodePtr = RNodePtr;
|
|
}
|
|
|
|
if (PofRNodePtr == DNodePtr)
|
|
// left child of deleted node is the replacement
|
|
// assign right subtree of D to R
|
|
RNodePtr->right = DNodePtr->right;
|
|
else
|
|
{
|
|
// we moved at least one node down a right brance
|
|
// delete replacement node from tree by assigning
|
|
// its left branc to its parent
|
|
PofRNodePtr->right = RNodePtr->left;
|
|
|
|
// put replacement node in place of DNodePtr.
|
|
RNodePtr->left = DNodePtr->left;
|
|
RNodePtr->right = DNodePtr->right;
|
|
}
|
|
}
|
|
|
|
// complete the link to the parent node
|
|
// deleting the root node. assign new root
|
|
if (PNodePtr == NULL)
|
|
root = RNodePtr;
|
|
// attach R to the correct branch of P
|
|
else if (DNodePtr->data < PNodePtr->data)
|
|
PNodePtr->left = RNodePtr;
|
|
else
|
|
PNodePtr->right = RNodePtr;
|
|
|
|
// delete the node from memory and decrement list size
|
|
FreeTreeNode(DNodePtr); // this says FirstTreeNode in the book, should be a typo
|
|
size--;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// if current node is defined and its data value matches item,
|
|
// assign node value to item; otherwise, insert item in tree
|
|
void Tree::Update(const int& item)
|
|
{
|
|
if (current !=NULL && current->data == item)
|
|
current->data = item;
|
|
else
|
|
Insert(item, item);
|
|
}
|
|
|
|
// create duplicate of tree t; return the new root
|
|
TreeNode *Tree::CopyTree(TreeNode *t)
|
|
{
|
|
// variable newnode points at each new node that is
|
|
// created by a call to GetTreeNode and later attached to
|
|
// the new tree. newlptr and newrptr point to the child of
|
|
// newnode and are passed as parameters to GetTreeNode
|
|
TreeNode *newlptr, *newrptr, *newnode;
|
|
|
|
// stop the recursive scan when we arrive at an empty tree
|
|
if (t == NULL)
|
|
return NULL;
|
|
|
|
// CopyTree builds a new tree by scanning the nodes of t.
|
|
// At each node in t, CopyTree checks for a left child. if
|
|
// present it makes a copy of left child or returns NULL.
|
|
// the algorithm similarly checks for a right child.
|
|
// CopyTree builds a copy of node using GetTreeNode and
|
|
// appends copy of left and right children to node.
|
|
|
|
if (t->Left() !=NULL)
|
|
newlptr = CopyTree(t->Left());
|
|
else
|
|
newlptr = NULL;
|
|
|
|
if (t->Right() !=NULL)
|
|
newrptr = CopyTree(t->Right());
|
|
else
|
|
newrptr = NULL;
|
|
|
|
|
|
// Build new tree from the bottom up by building the two
|
|
// children and then building the parent
|
|
newnode = GetTreeNode(t->data, newlptr, newrptr);
|
|
|
|
// return a pointer to the newly created node
|
|
return newnode;
|
|
}
|
|
|
|
|
|
// us the postorder scanning algorithm to traverse the nodes in
|
|
// the tree and delete each node as the vist operation
|
|
void Tree::DeleteTree(TreeNode *t)
|
|
{
|
|
if (t != NULL)
|
|
{
|
|
DeleteTree(t->Left());
|
|
DeleteTree(t->Right());
|
|
if (t->GetAuxData() != NULL)
|
|
delete t->GetAuxData();
|
|
FreeTreeNode(t);
|
|
}
|
|
}
|
|
|
|
// call the function DeleteTree to deallocate the nodes. then
|
|
// set the root pointer back to NULL
|
|
void Tree::ClearTree(TreeNode * &t)
|
|
{
|
|
DeleteTree(t);
|
|
t = NULL; // root now NULL
|
|
}
|
|
|
|
// delete all nodes in list
|
|
void Tree::ClearList(void)
|
|
{
|
|
delete root;
|
|
delete current;
|
|
size = 0;
|
|
}
|
|
|
|
#endif
|