forked from lijiext/lammps
149 lines
4.1 KiB
Fortran
149 lines
4.1 KiB
Fortran
SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
|
|
*
|
|
* -- LAPACK routine (version 3.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2006
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
* Purpose
|
|
* =======
|
|
*
|
|
* DGETF2 computes an LU factorization of a general m-by-n matrix A
|
|
* using partial pivoting with row interchanges.
|
|
*
|
|
* The factorization has the form
|
|
* A = P * L * U
|
|
* where P is a permutation matrix, L is lower triangular with unit
|
|
* diagonal elements (lower trapezoidal if m > n), and U is upper
|
|
* triangular (upper trapezoidal if m < n).
|
|
*
|
|
* This is the right-looking Level 2 BLAS version of the algorithm.
|
|
*
|
|
* Arguments
|
|
* =========
|
|
*
|
|
* M (input) INTEGER
|
|
* The number of rows of the matrix A. M >= 0.
|
|
*
|
|
* N (input) INTEGER
|
|
* The number of columns of the matrix A. N >= 0.
|
|
*
|
|
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
* On entry, the m by n matrix to be factored.
|
|
* On exit, the factors L and U from the factorization
|
|
* A = P*L*U; the unit diagonal elements of L are not stored.
|
|
*
|
|
* LDA (input) INTEGER
|
|
* The leading dimension of the array A. LDA >= max(1,M).
|
|
*
|
|
* IPIV (output) INTEGER array, dimension (min(M,N))
|
|
* The pivot indices; for 1 <= i <= min(M,N), row i of the
|
|
* matrix was interchanged with row IPIV(i).
|
|
*
|
|
* INFO (output) INTEGER
|
|
* = 0: successful exit
|
|
* < 0: if INFO = -k, the k-th argument had an illegal value
|
|
* > 0: if INFO = k, U(k,k) is exactly zero. The factorization
|
|
* has been completed, but the factor U is exactly
|
|
* singular, and division by zero will occur if it is used
|
|
* to solve a system of equations.
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION SFMIN
|
|
INTEGER I, J, JP
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH
|
|
INTEGER IDAMAX
|
|
EXTERNAL DLAMCH, IDAMAX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGER, DSCAL, DSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGETF2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Compute machine safe minimum
|
|
*
|
|
SFMIN = DLAMCH('S')
|
|
*
|
|
DO 10 J = 1, MIN( M, N )
|
|
*
|
|
* Find pivot and test for singularity.
|
|
*
|
|
JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 )
|
|
IPIV( J ) = JP
|
|
IF( A( JP, J ).NE.ZERO ) THEN
|
|
*
|
|
* Apply the interchange to columns 1:N.
|
|
*
|
|
IF( JP.NE.J )
|
|
$ CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
|
|
*
|
|
* Compute elements J+1:M of J-th column.
|
|
*
|
|
IF( J.LT.M ) THEN
|
|
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
|
|
CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
|
|
ELSE
|
|
DO 20 I = 1, M-J
|
|
A( J+I, J ) = A( J+I, J ) / A( J, J )
|
|
20 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
ELSE IF( INFO.EQ.0 ) THEN
|
|
*
|
|
INFO = J
|
|
END IF
|
|
*
|
|
IF( J.LT.MIN( M, N ) ) THEN
|
|
*
|
|
* Update trailing submatrix.
|
|
*
|
|
CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
|
|
$ A( J+1, J+1 ), LDA )
|
|
END IF
|
|
10 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of DGETF2
|
|
*
|
|
END
|