lammps/lib/atc/Material.cpp

350 lines
11 KiB
C++

#include "Material.h"
#include "ATC_Transfer.h"
#include "LammpsInterface.h"
#include "ElectronHeatCapacity.h"
#include "ElectronHeatFlux.h"
#include "ElectronPhononExchange.h"
namespace ATC {
using namespace ATC_STRING;
Material::Material()
: rhoCp_(0),
rho_(0),
heatCapacity_(0),
massDensity_(0),
chargeDensity_(0),
electronHeatCapacity_(NULL),
heatConductivity_(0),
electronHeatFlux_(NULL),
stress_(NULL),
electronPhononExchange_(NULL),
permittivity_(1.),
electronEquilibriumDensity_(0),
electronRecombinationInvTau_(0),
donorConcentration_(0)
{
}
//--------------------------------------------------------------
// Constructor (parser)
//--------------------------------------------------------------
// Example:
// material Cu
// heat_capacity constant
// capacity 1.0
// end
// heat_flux linear
// conductivity 1.0
// end
// electron_heat_flux linear
// conductivity 1.0
// end
// electron_heat_capacity linear
// capacity 1.0
// end
// electron_phonon_exchange linear
// coefficient 0.1
// end
// end
Material::Material(string & tag, fstream &fileId)
: tag_(tag),
rhoCp_(0),
rho_(0),
heatCapacity_(0),
massDensity_(0),
chargeDensity_(0),
electronHeatCapacity_(NULL),
heatConductivity_(0),
electronHeatFlux_(NULL),
stress_(NULL),
electronPhononExchange_(NULL),
permittivity_(1.),
electronEquilibriumDensity_(0),
electronRecombinationInvTau_(0),
donorConcentration_(0)
{
linearFlux_.reset(NUM_FIELDS);
linearFlux_ = false;
linearSource_.reset(NUM_FIELDS);
linearSource_ = true;
constantDensity_.reset(NUM_FIELDS);
constantDensity_ = false;
// NOTE these next two rely on many assumptions
rhoCp_ = ATC::LammpsInterface::instance()->heat_capacity();
parameters_["heat_capacity"] = rhoCp_;
heatCapacity_ = rhoCp_;
registry_.insert("heat_capacity");
constantDensity_(TEMPERATURE) = true;
rho_ = ATC::LammpsInterface::instance()->mass_density();
parameters_["mass_density"] = rho_;
massDensity_ = rho_;
registry_.insert("mass_density");
constantDensity_(DISPLACEMENT) = true;
constantDensity_(VELOCITY) = true;
vector<string> line;
while(fileId.good()) {
get_command_line(fileId, line);
if (line.size() == 0) continue;
if (line.size() == 1) {
if (line[0] == "end") {
return;
}
}
if (line[0] == "heat_capacity") { // over-ride default
registry_. insert("heat_capacity");
registry_. insert("thermal_energy");
if (line[1] == "constant") {
while(fileId.good()) {
get_command_line(fileId, line);
if (line.size() == 0) continue;
if (line[0] == "end") break;
double value = str2dbl(line[1]);
if (line[0] == "capacity") {
heatCapacity_ = value;
parameters_["heat_capacity"] = heatCapacity_;
}
}
}
}
else if (line[0] == "heat_flux") {
registry_. insert("heat_flux");
if (line[1] == "linear") {
linearFlux_(TEMPERATURE) = true;
while(fileId.good()) {
get_command_line(fileId, line);
if (line.size() == 0) continue;
if (line[0] == "end") break;
double value = str2dbl(line[1]);
if (line[0] == "conductivity") {
heatConductivity_ = value;
}
}
}
}
else if (line[0] == "electron_heat_flux") {
registry_. insert("electron_heat_flux");
if (line[1] == "linear") {
linearFlux_(ELECTRON_TEMPERATURE) = true;
electronHeatFlux_ = new ElectronHeatFluxLinear(fileId, parameters_);
}
else if (line[1] == "power_law") {
electronHeatFlux_ = new ElectronHeatFluxPowerLaw(fileId, parameters_);
}
}
else if (line[0] == "electron_heat_capacity") {
registry_. insert("electron_heat_capacity");
registry_. insert("electron_thermal_energy");
if (line[1] == "constant") {
constantDensity_(ELECTRON_TEMPERATURE) = true;
electronHeatCapacity_ = new ElectronHeatCapacityConstant(fileId,
parameters_);
}
else if (line[1] == "linear") {
electronHeatCapacity_ = new ElectronHeatCapacityLinear(fileId,
parameters_);
}
}
else if (line[0] == "electron_phonon_exchange") {
registry_. insert("electron_phonon_exchange");
if (line[1] == "linear") {
electronPhononExchange_ = new ElectronPhononExchangeLinear(fileId,
parameters_);
}
else if (line[1] == "power_law") {
linearSource_(TEMPERATURE) = false;
linearSource_(ELECTRON_TEMPERATURE) = false;
electronPhononExchange_ = new ElectronPhononExchangePowerLaw(fileId,
parameters_);
}
}
else if (line[0] == "mass_density") { // over-ride default
registry_. insert("mass_density");
registry_. insert("kinetic_energy");
if (line[1] == "constant") {
while(fileId.good()) {
get_command_line(fileId, line);
if (line.size() == 0) continue;
if (line[0] == "end") break;
double value = str2dbl(line[1]);
if (line[0] == "density") {
massDensity_ = value;
parameters_["mass_density"] = massDensity_;
}
}
}
}
else if (line[0] == "electron_recombination") {
registry_. insert("electron_recombination");
if (line[1] == "linear") {
while(fileId.good()) {
get_command_line(fileId, line);
if (line.size() == 0) continue;
if (line[0] == "end") break;
double value = str2dbl(line[1]);
if (line[0] == "inv_relaxation_time") {
electronRecombinationInvTau_ = value;
parameters_["inv_relaxation_time"] = electronRecombinationInvTau_;
}
else if (line[0] == "equilibrium_carrier_density") {
electronEquilibriumDensity_ = value;
parameters_["equilibrium_carrier_density"]
= electronEquilibriumDensity_;
}
}
}
}
else if (line[0] == "charge_density") {
registry_. insert("charge_density");
if (line[1] == "constant") {
while(fileId.good()) {
get_command_line(fileId, line);
if (line.size() == 0) continue;
if (line[0] == "end") break;
double value = str2dbl(line[1]);
if (line[0] == "donor_concentration") {
donorConcentration_ = value;
parameters_["donor_concentration"] = donorConcentration_;
}
else if (line[0] == "density") {
chargeDensity_ = value;
parameters_["charge_density"] = chargeDensity_;
}
}
}
}
else {
throw ATC_Error(0, "unrecognized material function: "+line[0]);
}
}
}
//---------------------------------------------------------------------
void Material::heat_capacity(
const FIELDS & fields,
FIELD & capacity)
{
const FIELD & T = (fields.find(TEMPERATURE))->second;
int nNodes = T.nRows();
capacity.reset(nNodes,1);
capacity = heatCapacity_;
};
//---------------------------------------------------------------------
void Material::thermal_energy(
const FIELDS &fields,
FIELD &energy)
{
const FIELD & T = (fields.find(TEMPERATURE))->second;
energy = heatCapacity_ * T;
};
//---------------------------------------------------------------------
void Material::electron_heat_capacity(
const FIELDS & fields,
FIELD & capacity)
{
electronHeatCapacity_->electron_heat_capacity(fields,capacity);
};
//---------------------------------------------------------------------
void Material::electron_thermal_energy(
const FIELDS &fields,
FIELD &energy)
{
electronHeatCapacity_->electron_thermal_energy(fields,energy);
};
//---------------------------------------------------------------------
void Material::mass_density(
const FIELDS &fields,
FIELD &density)
{
int nNodes = 0;
FIELDS::const_iterator field = fields.find(MASS_DENSITY);
if (field != fields.end()) {
const FIELD & d = field->second;
nNodes = d.nRows();
}
else {
FIELDS::const_iterator field = fields.find(VELOCITY);
if (field != fields.end()) {
const FIELD & v = field->second;
nNodes = v.nRows();
}
}
density.reset(nNodes,1);
density = massDensity_;
};
//---------------------------------------------------------------------
void Material::kinetic_energy(
const FIELDS &fields,
FIELD &energy)
{
FIELDS::const_iterator field = fields.find(VELOCITY);
if (field != fields.end()) {
const FIELD & v = field->second;
energy = 0.5*massDensity_*v;
energy *= v;
}
else {
energy = 0.;
}
};
//---------------------------------------------------------------------
void Material::heat_flux(
const FIELDS & fields,
const GRAD_FIELDS & gradFields,
GRAD_FIELD & flux)
{
const GRAD_FIELD & dT = (gradFields.find(TEMPERATURE))->second;
flux.push_back(-heatConductivity_* dT[0]);
flux.push_back(-heatConductivity_* dT[1]);
flux.push_back(-heatConductivity_* dT[2]);
}
//---------------------------------------------------------------------
void Material::electron_heat_flux(
const FIELDS & fields,
const GRAD_FIELDS & gradFields,
GRAD_FIELD & flux)
{
electronHeatFlux_->electron_heat_flux(fields,gradFields,flux);
}
//---------------------------------------------------------------------
void Material::electron_phonon_exchange(
const FIELDS & fields,
FIELD & flux)
{
electronPhononExchange_->electron_phonon_exchange(fields,flux);
}
//---------------------------------------------------------------------
void Material::electron_recombination(
const FIELDS &fields,
const GRAD_FIELDS &gradFields,
FIELD & flux)
{
// 1/tau (n - n0)
const FIELD & n = (fields.find(ELECTRON_DENSITY))->second;
flux = n;
flux -= electronEquilibriumDensity_;
flux *= -electronRecombinationInvTau_;
}
//---------------------------------------------------------------------
void Material::charge_density(
const FIELDS &fields,
const GRAD_FIELDS &gradFields,
FIELD & flux)
{
// Extrinsic/electron charge density
FIELDS::const_iterator field = fields.find(ELECTRON_DENSITY);
if (field != fields.end()) {
// (n - nD) , where n > 0
const FIELD & n = field->second;
flux = n;
flux -= donorConcentration_;// NOTE uniform
flux *= -1.0; // account for negative charge
}
};
} // end namespace