lammps/doc/compute_pe.txt

102 lines
3.6 KiB
Plaintext

"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute pe command :h3
compute pe/cuda command :h3
[Syntax:]
compute ID group-ID pe keyword ... :pre
ID, group-ID are documented in "compute"_compute.html command
pe = style name of this compute command
zero or more keywords may be appended
keyword = {pair} or {bond} or {angle} or {dihedral} or {improper} or {kspace} :ul
[Examples:]
compute 1 all pe
compute molPE all pe bond angle dihedral improper :pre
[Description:]
Define a computation that calculates the potential energy of the
entire system of atoms. The specified group must be "all". See the
"compute pe/atom"_compute_pe_atom.html command if you want per-atom
energies. These per-atom values could be summed for a group of atoms
via the "compute reduce"_compute_reduce.html command.
The energy is calculated by the various pair, bond, etc potentials
defined for the simulation. If no extra keywords are listed, then the
potential energy is the sum of pair, bond, angle, dihedral, improper,
and kspace (long-range) energy. If any extra keywords are listed,
then only those components are summed to compute the potential energy.
The KSpace contribution requires 1 extra FFT each timestep the
per-atom energy is calculated, if using the PPPM solver via the
"kspace_style pppm"_kspace_style.html command. Thus it can increase
the cost of the PPPM calculation if it is needed on a large fraction
of the simulation timesteps.
Various fixes can contribute to the total potential energy of the
system. See the doc pages for "individual fixes"_fix.html for
details. The {thermo} option of the
"compute_modify"_compute_modify.html command determines whether these
contributions are added into the computed potential energy. If no
keywords are specified the default is {yes}. If any keywords are
specified, the default is {no}.
A compute of this style with the ID of "thermo_pe" is created when
LAMMPS starts up, as if this command were in the input script:
compute thermo_pe all pe :pre
See the "thermo_style" command for more details.
:line
Styles with a {cuda} suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in
"Section_accelerate"_Section_accelerate.html of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.
These accelerated styles are part of the USER-CUDA package. They are
only enabled if LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section_accelerate"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
:line
[Output info:]
This compute calculates a global scalar (the potential energy). This
value can be used by any command that uses a global scalar value from
a compute as input. See "Section_howto
15"_Section_howto.html#howto_15 for an overview of LAMMPS output
options.
The scalar value calculated by this compute is "extensive". The
scalar value will be in energy "units"_units.html.
[Restrictions:] none
[Related commands:]
"compute pe/atom"_compute_pe_atom.html
[Default:] none