lammps/lib/atc/KD_Tree.cpp

170 lines
5.4 KiB
C++

#include "KD_Tree.h"
#include <assert.h>
using std::vector;
KD_Tree *KD_Tree::create_KD_tree(const int nNodesPerElem, const int nNodes,
const DENS_MAT *nodalCoords, const int nElems,
const Array2D<int> &conn) {
vector<Node> *points = new vector<Node>(); // Initialize an empty list of Nodes
for (int node = 0; node < nNodes; node++) { // Insert all nodes into list
points->push_back(Node(node, (*nodalCoords)(0, node),
(*nodalCoords)(1, node),
(*nodalCoords)(2, node)));
}
vector<Elem> *elements = new vector<Elem>();
for (int elem = 0; elem < nElems; elem++) {
vector<Node> nodes = vector<Node>();
for (int node = 0; node < nNodesPerElem; node++) {
nodes.push_back((*points)[conn(node, elem)]);
}
elements->push_back(Elem(elem, nodes));
}
return new KD_Tree(points, elements);
}
KD_Tree::~KD_Tree() {
delete sortedPts_;
delete candElems_;
delete leftChild_;
delete rightChild_;
}
KD_Tree::KD_Tree(vector<Node> *points, vector<Elem> *elements,
int dimension)
: candElems_(elements) {
// Set up comparison functions
bool (*compare)(Node, Node);
if (dimension == 0) {
compare = Node::compareX;
} else if (dimension == 1) {
compare = Node::compareY;
} else {
compare = Node::compareZ;
}
// Sort points by their coordinate in the current dimension
sort(points->begin(), points->end(), compare);
sortedPts_ = points;
// Pick the median point as the root of the tree
size_t nNodes = points->size();
size_t med = nNodes/2;
value_ = (*sortedPts_)[med];
// Recursively construct the left sub-tree
vector<Node> *leftPts = new vector<Node>;
vector<Elem> *leftElems = new vector<Elem>;
// Recursively construct the right sub-tree
vector<Node> *rightPts = new vector<Node>;
vector<Elem> *rightElems = new vector<Elem>;
for (vector<Elem>::iterator elit = candElems_->begin();
elit != candElems_->end(); elit++) {
// Identify elements that should be kept on either side
bool foundElemLeft = false;
bool foundElemRight = false;
for (vector<Node>::iterator ndit = elit->second.begin();
ndit != elit->second.end(); ndit++) {
// Search this node
if (compare(*ndit, value_)) {
if (find(leftPts->begin(), leftPts->end(), *ndit) == leftPts->end()) {
leftPts->push_back(*ndit);
}
foundElemLeft = true;
}
if (compare(value_, *ndit)) {
if (find(rightPts->begin(), rightPts->end(), *ndit) == rightPts->end()) {
rightPts->push_back(*ndit);
}
foundElemRight = true;
}
}
if (foundElemLeft) leftElems->push_back(*elit);
if (foundElemRight) rightElems->push_back(*elit);
}
// Create child tree, or NULL if there's nothing to create
if (candElems_->size() - leftElems->size() < 4 || leftElems->size() == 0) {
leftChild_ = NULL;
delete leftPts;
delete leftElems;
} else {
leftChild_ = new KD_Tree(leftPts, leftElems, (dimension+1) % 3);
}
// Create child tree, or NULL if there's nothing to create
if (candElems_->size() - rightElems->size() < 4 || rightElems->size() == 0) {
rightChild_ = NULL;
delete rightPts;
delete rightElems;
} else {
rightChild_ = new KD_Tree(rightPts, rightElems, (dimension+1) % 3);
}
}
vector<int> KD_Tree::find_nearest_elements(Node query, int dimension) {
// if the root coordinate is less than the query coordinate
// If the query point is less that the value (split) point of this
// tree, either recurse to the left or return this node's elements
// if there is no left child.
if (query.lessThanInDimension(value_, dimension)) {
if (leftChild_ == NULL) {
vector<int> result = vector<int>();
for (vector<Elem>::iterator elem = candElems_->begin();
elem != candElems_->end(); elem++) {
result.push_back(elem->first);
}
return result;
}
return leftChild_->find_nearest_elements(query, (dimension+1) % 3);
} else {
if (rightChild_ == NULL) {
vector<int> result = vector<int>();
for (vector<Elem>::iterator elem = candElems_->begin();
elem != candElems_->end(); elem++) {
result.push_back(elem->first);
}
return result;
}
return rightChild_->find_nearest_elements(query, (dimension+1) % 3);
}
}
vector<vector<int> > KD_Tree::getElemIDs(int depth) {
vector<vector<int> > result;
vector<vector<int> > temp;
assert(depth >= 0 );
if (depth == 0) {
vector<int> candElemIDs;
vector<Elem>::iterator it;
for(it = candElems_->begin(); it != candElems_->end(); ++it) {
candElemIDs.push_back((*it).first);
}
sort(candElemIDs.begin(), candElemIDs.end());
result.push_back(candElemIDs);
} else if (leftChild_ == NULL || rightChild_ == NULL) {
// Insert all nodes at this level once,
// then insert a bunch of empty vectors.
temp = this->getElemIDs(0);
result.insert(result.end(), temp.begin(), temp.end());
int numRequested = floor(pow(2,depth));
for (int i = 0; i < numRequested - 1; ++i) {
vector<int> emptyVec;
result.push_back(emptyVec);
}
} else {
--depth;
temp = leftChild_->getElemIDs(depth);
result.insert(result.end(), temp.begin(), temp.end());
temp = rightChild_->getElemIDs(depth);
result.insert(result.end(), temp.begin(), temp.end());
}
return result;
}