lammps/lib/atc/FieldEulerIntegrator.cpp

154 lines
5.5 KiB
C++

#include "FieldEulerIntegrator.h"
#include "ATC_Coupling.h"
#include "FE_Engine.h"
#include "PhysicsModel.h"
#include "PrescribedDataManager.h"
//#include "GMRES.h"
//#include "CG.h"
#include "ImplicitSolveOperator.h"
#include "MatrixDef.h"
#include "LinearSolver.h"
namespace ATC {
// ====================================================================
// FieldEulerIntegrator
// ====================================================================
FieldEulerIntegrator::FieldEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask // copy
)
: atc_(atc),
feEngine_(feEngine),
physicsModel_(physicsModel),
fieldName_(fieldName),
rhsMask_(rhsMask)
{
nNodes_ = feEngine->num_nodes();
}
// ====================================================================
// FieldImplicitIntegrator
// ====================================================================
FieldExplicitEulerIntegrator::FieldExplicitEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask // copy
) : FieldEulerIntegrator(fieldName,physicsModel,feEngine,atc,rhsMask)
{
}
// --------------------------------------------------------------------
// update
// --------------------------------------------------------------------
void FieldExplicitEulerIntegrator::update(const double dt, double time,
FIELDS & fields, FIELDS & rhs)
{
// write and add update mass matrix to handled time variation
// update mass matrix to be consistent/lumped, and handle this in apply_inverse_mass_matrix
atc_->compute_rhs_vector(rhsMask_, fields, rhs,
FULL_DOMAIN, physicsModel_);
DENS_MAT & myRhs(rhs[fieldName_].set_quantity());
atc_->apply_inverse_mass_matrix(myRhs,fieldName_);
fields[fieldName_] += dt*myRhs;
}
// ====================================================================
// FieldImplicitEulerIntegrator
// ====================================================================
FieldImplicitEulerIntegrator::FieldImplicitEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask, // copy
const double alpha
) : FieldEulerIntegrator(fieldName,physicsModel,feEngine,atc,rhsMask),
alpha_(alpha),
dT_(1.0e-6),
maxRestarts_(50),
maxIterations_(1000),
tol_(1.0e-8)
{
}
// --------------------------------------------------------------------
// update
// --------------------------------------------------------------------
void FieldImplicitEulerIntegrator::update(const double dt, double time,
FIELDS & fields, FIELDS & rhs)
{ // solver handles bcs
FieldImplicitSolveOperator solver(atc_,
fields, fieldName_, rhsMask_, physicsModel_,
time, dt, alpha_);
DiagonalMatrix<double> preconditioner = solver.preconditioner();
DENS_VEC rT = solver.r();
DENS_VEC dT(nNodes_); dT = dT_;
DENS_MAT H(maxRestarts_+1, maxRestarts_);
double tol = tol_; // tol returns the residual
int iterations = maxIterations_; // iterations returns number of iterations
int restarts = maxRestarts_;
int convergence = GMRES(solver,
dT, rT, preconditioner, H, restarts, iterations, tol);
if (convergence != 0) {
throw ATC_Error(field_to_string(fieldName_) + " evolution did not converge");
}
solver.solution(dT,fields[fieldName_].set_quantity());
}
// ====================================================================
// FieldImplicitDirectEulerIntegrator
// ====================================================================
FieldImplicitDirectEulerIntegrator::FieldImplicitDirectEulerIntegrator(
const FieldName fieldName,
const PhysicsModel * physicsModel,
/*const*/ FE_Engine * feEngine,
/*const*/ ATC_Coupling * atc,
const Array2D< bool > & rhsMask, // copy
const double alpha
) : FieldEulerIntegrator(fieldName,physicsModel,feEngine,atc,rhsMask),
alpha_(alpha),solver_(NULL)
{
rhsMask_(fieldName_,FLUX) = false; // handle laplacian term with stiffness
const BC_SET & bcs = (atc_->prescribed_data_manager()->bcs(fieldName_))[0];
solver_ = new LinearSolver(_lhsMK_,bcs);
solver_->allow_reinitialization();
}
FieldImplicitDirectEulerIntegrator::~FieldImplicitDirectEulerIntegrator()
{
if (solver_) delete solver_;
}
// --------------------------------------------------------------------
// initialize
// --------------------------------------------------------------------
void FieldImplicitDirectEulerIntegrator::initialize(const double dt, double time,
FIELDS & fields)
{
std::pair<FieldName,FieldName> p(fieldName_,fieldName_);
Array2D <bool> rmask = atc_->rhs_mask();
rmask(fieldName_,FLUX) = true;
atc_->tangent_matrix(p,rmask,physicsModel_,_K_);
_lhsMK_ = (1./dt)*(_M_)- alpha_*(_K_);
_rhsMK_ = (1./dt)*(_M_)+(1.+alpha_)*(_K_);
}
// --------------------------------------------------------------------
// update
// --------------------------------------------------------------------
void FieldImplicitDirectEulerIntegrator::update(const double dt, double time,
FIELDS & fields, FIELDS & rhs)
{
atc_->compute_rhs_vector(rhsMask_, fields, rhs,
FULL_DOMAIN, physicsModel_);
CLON_VEC myRhs = column( rhs[fieldName_].set_quantity(),0);
CLON_VEC myField = column(fields[fieldName_].set_quantity(),0);
myRhs += _rhsMK_*myField; // f = (1/dt M + (1+alpha) K) T + f
solver_->solve(myField,myRhs); // (1/dt M -alpha K)^-1 f
}
} // namespace ATC