lammps/lib/atc/FE_Element.cpp

748 lines
25 KiB
C++

// ATC header files
#include "ATC_Error.h"
#include "FE_Mesh.h"
#include "FE_Element.h"
#include "FE_Interpolate.h"
#include "LinearSolver.h"
#include "PolynomialSolver.h"
#include "Utility.h"
// Other headers
#include "math.h"
using ATC_Utility::dbl_geq;
using ATC_Utility::det3;
using std::vector;
namespace ATC {
static const int localCoordinatesMaxIterations_ = 40;
static const double localCoordinatesTolerance = 1.e-09;
// =============================================================
// class FE_Element
// =============================================================
FE_Element::FE_Element(const int nSD,
int numFaces,
int numNodes,
int numFaceNodes,
int numNodes1d)
: nSD_(nSD),
numFaces_(numFaces),
numNodes_(numNodes),
numFaceNodes_(numFaceNodes),
numNodes1d_(numNodes1d),
tolerance_(localCoordinatesTolerance),
projectionGuess_(COORDINATE_ALIGNED)
{
feInterpolate_ = NULL;
}
FE_Element::~FE_Element()
{
if (feInterpolate_) delete feInterpolate_;
}
int FE_Element::num_ips() const
{
return feInterpolate_->num_ips();
}
int FE_Element::num_face_ips() const
{
return feInterpolate_->num_face_ips();
}
void FE_Element::face_coordinates(const DENS_MAT &eltCoords,
const int faceID,
DENS_MAT & faceCoords) const
{
faceCoords.reset(nSD_, numFaceNodes_);
for (int inode=0; inode < numFaceNodes_; inode++)
{
int id = localFaceConn_(faceID,inode);
for (int isd=0; isd<nSD_; isd++) {
faceCoords(isd,inode) = eltCoords(isd,id);
}
}
}
void FE_Element::mapping(const int inode, vector<int> &mapping) const
{
for (int iSD=0; iSD<nSD_; ++iSD) {
mapping[iSD] = static_cast<int>((localCoords_(iSD,inode)+1)/2*
(numNodes1d_-1));
}
}
DENS_VEC FE_Element::local_coords_1d() const
{
DENS_VEC localCoords1d(numNodes1d_);
for (int inode1d=0; inode1d<numNodes1d_; ++inode1d) {
localCoords1d(inode1d) = (double(inode1d)/double(numNodes1d_-1))*2 - 1;
}
return localCoords1d;
}
void FE_Element::centroid(const DENS_MAT &eltCoords,
DENS_VEC &centroid) const
{
centroid.reset(nSD_);
for (int i = 0; i < nSD_; i++) {
centroid(i) = eltCoords.row_mean(i);
}
}
// -------------------------------------------------------------
// generic conversion from global to local coordinates using
// Newton's method to solve the nonliear equation that arises
// -------------------------------------------------------------
bool FE_Element::local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const
{
// initial guess
DENS_VEC xiGuess(nSD_);
this->initial_local_coordinates(eltCoords,x,xiGuess);
// clip out-of-range guesses
if (fabs(xiGuess(0)) > 1.0) xiGuess(0) = 0.;
if (fabs(xiGuess(1)) > 1.0) xiGuess(1) = 0.;
if (fabs(xiGuess(2)) > 1.0) xiGuess(2) = 0.;
// iteratively solve the equation by calculating the global
// position of the guess and bringing the difference between it
// and the actual global position of x to zero
//
// uses Newton's method
DENS_VEC N(numNodes_);
DENS_MAT dNdr(nSD_,numNodes_);
DENS_VEC xGuess(nSD_);
DENS_VEC xDiff(nSD_);
DENS_MAT eltCoordsT = transpose(eltCoords);
int count = 0;
bool converged = false;
while (count < localCoordinatesMaxIterations_) {
feInterpolate_->compute_N_dNdr(xiGuess,N,dNdr);
xGuess = N*eltCoordsT;
xDiff = xGuess-x;
// determine if the guess is close enough.
// if it is, take it and run
// if not, use Newton's method to update the guess
if (!dbl_geq(abs(xDiff(0)),tolerance_) &&
!dbl_geq(abs(xDiff(1)),tolerance_) &&
!dbl_geq(abs(xDiff(2)),tolerance_)) {
converged = true;
xi = xiGuess;
break;
} else {
xiGuess = xiGuess - transpose(inv(dNdr*eltCoordsT))*xDiff;
}
++count;
}
return converged;
}
// -------------------------------------------------------------
// guess for initial local coordinates
// -------------------------------------------------------------
void FE_Element::initial_local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const
{
xi.reset(nSD_);
if (projectionGuess_ == COORDINATE_ALIGNED) {
double min=0; double max=0;
for (int i=0; i<nSD_; ++i) {
bounds_in_dim(eltCoords,i,min,max);
xi(i) = 2.0*(x(i)-min)/(max-min) - 1.0;
}
}
else if (projectionGuess_ == CENTROID_LINEARIZED) {
DENS_VEC xi0(nSD_); xi0 = 0;
DENS_VEC x0(nSD_), dx(nSD_);
centroid(eltCoords,x0);
dx = x - x0;
vector<DENS_VEC> ts; ts.reserve(nSD_);
tangents(eltCoords,xi0,ts);
DENS_VEC & t1 = ts[0];
DENS_VEC & t2 = ts[1];
DENS_VEC & t3 = ts[2];
double J = det3(t1.ptr(),t2.ptr(),t3.ptr());
double J1 = det3(dx.ptr(),t2.ptr(),t3.ptr());
double J2 = det3(t1.ptr(),dx.ptr(),t3.ptr());
double J3 = det3(t1.ptr(),t2.ptr(),dx.ptr());
xi(0) = J1/J;
xi(1) = J2/J;
xi(2) = J3/J;
}
else if (projectionGuess_ == TWOD_ANALYTIC) {
// assume x-y planar and HEX8
double x0 = x(0), y0 = x(1);
double X[4] = {eltCoords(0,0),eltCoords(0,1),eltCoords(0,2),eltCoords(0,3)};
double Y[4] = {eltCoords(1,0),eltCoords(1,1),eltCoords(1,2),eltCoords(1,3)};
double c[3]={0,0,0};
c[0] = y0*X[0] - y0*X[1] - y0*X[2] + y0*X[3] - x0*Y[0] + (X[1]*Y[0])*0.5 + (X[2]*Y[0])*0.5 + x0*Y[1] - (X[0]*Y[1])*0.5 - (X[3]*Y[1])*0.5 + x0*Y[2] - (X[0]*Y[2])*0.5 - (X[3]*Y[2])*0.5 - x0*Y[3] + (X[1]*Y[3])*0.5 + (X[2]*Y[3])*0.5;
c[1] = -(y0*X[0]) + y0*X[1] - y0*X[2] + y0*X[3] + x0*Y[0] - X[1]*Y[0] - x0*Y[1] + X[0]*Y[1] + x0*Y[2] - X[3]*Y[2] - x0*Y[3] + X[2]*Y[3];
c[1] = (X[1]*Y[0])*0.5 - (X[2]*Y[0])*0.5 - (X[0]*Y[1])*0.5 + (X[3]*Y[1])*0.5 + (X[0]*Y[2])*0.5 - (X[3]*Y[2])*0.5 - (X[1]*Y[3])*0.5 + (X[2]*Y[3])*0.5;
double xi2[2]={0,0};
int nroots = solve_quadratic(c,xi2);
if (nroots == 0) throw ATC_Error("no real roots in 2D analytic projection guess");
double xi1[2]={0,0};
xi1[0] = (4*x0 - X[0] + xi2[0]*X[0] - X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0] - X[0] - xi2[0]*X[0])/(-X[0] + xi2[0]*X[0] + X[0] - xi2[0]*X[0] + X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0]);
xi1[1] = (4*x0 - X[0] + xi2[0]*X[0] - X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0] - X[0] - xi2[0]*X[0])/(-X[0] + xi2[0]*X[0] + X[0] - xi2[0]*X[0] + X[0] + xi2[0]*X[0] - X[0] - xi2[0]*X[0]);
// choose which one gives back x
xi(0) = xi1[0];
xi(1) = xi2[0];
xi(2) = 0;
}
}
bool FE_Element::range_check(const DENS_MAT &eltCoords,
const DENS_VEC &x) const
{
double min=0; double max=0;
for (int i=0; i<nSD_; ++i) {
bounds_in_dim(eltCoords,i,min,max);
if (!dbl_geq(x(i),min) || !dbl_geq(max,x(i))) return false;
}
return true;
}
// -------------------------------------------------------------
// Note: Only works for convex elements with planar faces with
// outward normals
// -------------------------------------------------------------
bool FE_Element::contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const
{
if (! range_check(eltCoords,x) ) return false;
DENS_MAT faceCoords;
DENS_VEC normal;
normal.reset(nSD_);
DENS_VEC faceToPoint;
double dot;
bool inside = true;
for (int faceID=0; faceID<numFaces_; ++faceID) {
face_coordinates(eltCoords, faceID, faceCoords);
feInterpolate_->face_normal(faceCoords,
0,
normal);
faceToPoint = x - column(faceCoords, 0);
dot = normal.dot(faceToPoint);
if (dbl_geq(dot,0)) {
inside = false;
break;
}
}
return inside;
}
// -------------------------------------------------------------
// returns the minimum and maximum values of an element in the
// specified dimension
// -------------------------------------------------------------
void FE_Element::bounds_in_dim(const DENS_MAT &eltCoords, const int dim,
double &min, double &max) const
{
int it;
// iterate over all nodes
min = eltCoords(dim,0);
it = 1;
while (it < numNodes_) {
if (dbl_geq(min,eltCoords(dim,it))) {
if (dbl_geq(eltCoords(dim,it),min)) {
++it;
} else {
// set min to this node's coord in the specified dim, if it's
// smaller than the value previously stored
min = eltCoords(dim,it);
}
} else {
++it;
}
}
max = eltCoords(dim,0);
it = 1;
while (it < numNodes_) {
if (dbl_geq(max,eltCoords(dim,it))) {
++it;
} else {
// same, except max/larger
max = eltCoords(dim,it);
}
}
}
// -------------------------------------------------------------
// shape_function calls should stay generic at all costs
// -------------------------------------------------------------
void FE_Element::shape_function(const VECTOR &xi,
DENS_VEC &N) const
{
feInterpolate_->shape_function(xi, N);
}
void FE_Element::shape_function(const DENS_MAT eltCoords,
const VECTOR &x,
DENS_VEC &N)
{
DENS_VEC xi;
local_coordinates(eltCoords, x, xi);
feInterpolate_->shape_function(xi, N);
}
void FE_Element::shape_function(const DENS_MAT eltCoords,
const VECTOR &x,
DENS_VEC &N,
DENS_MAT &dNdx)
{
DENS_VEC xi;
local_coordinates(eltCoords, x, xi);
feInterpolate_->shape_function(eltCoords, xi, N, dNdx);
}
void FE_Element::shape_function_derivatives(const DENS_MAT eltCoords,
const VECTOR &x,
DENS_MAT &dNdx)
{
DENS_VEC xi;
local_coordinates(eltCoords, x, xi);
feInterpolate_->shape_function_derivatives(eltCoords, xi, dNdx);
}
void FE_Element::shape_function(const DENS_MAT eltCoords,
DENS_MAT &N,
vector<DENS_MAT> &dN,
DIAG_MAT &weights)
{
feInterpolate_->shape_function(eltCoords, N, dN, weights);
}
void FE_Element::face_shape_function(const DENS_MAT &eltCoords,
const int faceID,
DENS_MAT &N,
DENS_MAT &n,
DIAG_MAT &weights)
{
DENS_MAT faceCoords;
face_coordinates(eltCoords, faceID, faceCoords);
feInterpolate_->face_shape_function(eltCoords, faceCoords, faceID,
N, n, weights);
}
void FE_Element::face_shape_function(const DENS_MAT &eltCoords,
const int faceID,
DENS_MAT &N,
vector<DENS_MAT> &dN,
vector<DENS_MAT> &Nn,
DIAG_MAT &weights)
{
DENS_MAT faceCoords;
face_coordinates(eltCoords, faceID, faceCoords);
feInterpolate_->face_shape_function(eltCoords, faceCoords, faceID,
N, dN, Nn, weights);
}
double FE_Element::face_normal(const DENS_MAT &eltCoords,
const int faceID,
int ip,
DENS_VEC &normal)
{
DENS_MAT faceCoords;
face_coordinates(eltCoords, faceID, faceCoords);
double J = feInterpolate_->face_normal(faceCoords, ip, normal);
return J;
}
void FE_Element::tangents(const DENS_MAT &eltCoords,
const DENS_VEC & localCoords,
vector<DENS_VEC> &tangents,
const bool normalize) const
{
feInterpolate_->tangents(eltCoords,localCoords,tangents,normalize);
}
// =============================================================
// class FE_ElementHex
// =============================================================
FE_ElementHex::FE_ElementHex(int numNodes,
int numFaceNodes,
int numNodes1d)
: FE_Element(3, // number of spatial dimensions
6, // number of faces
numNodes,
numFaceNodes,
numNodes1d)
{
// 3 --- 2
// /| /|
// / 0 --/ 1 y
// 7 --- 6 / |
// | |/ |
// 4 --- 5 -----x
// /
// /
// z
// Basic properties of element:
vol_ = 8.0;
faceArea_ = 4.0;
// Order-specific information:
if (numNodes != 8 &&
numNodes != 20 &&
numNodes != 27) {
throw ATC_Error("Unrecognized interpolation order specified "
"for element class: \n"
" element only knows how to construct lin "
"and quad elments.");
}
localCoords_.resize(nSD_,numNodes_);
localFaceConn_ = Array2D<int>(numFaces_,numFaceNodes_);
// Matrix of local nodal coordinates
localCoords_(0,0) = -1; localCoords_(0,4) = -1;
localCoords_(1,0) = -1; localCoords_(1,4) = -1;
localCoords_(2,0) = -1; localCoords_(2,4) = 1;
//
localCoords_(0,1) = 1; localCoords_(0,5) = 1;
localCoords_(1,1) = -1; localCoords_(1,5) = -1;
localCoords_(2,1) = -1; localCoords_(2,5) = 1;
//
localCoords_(0,2) = 1; localCoords_(0,6) = 1;
localCoords_(1,2) = 1; localCoords_(1,6) = 1;
localCoords_(2,2) = -1; localCoords_(2,6) = 1;
//
localCoords_(0,3) = -1; localCoords_(0,7) = -1;
localCoords_(1,3) = 1; localCoords_(1,7) = 1;
localCoords_(2,3) = -1; localCoords_(2,7) = 1;
if (numNodes >= 20) {
// only for quads
localCoords_(0,8) = 0; localCoords_(0,14) = 1;
localCoords_(1,8) = -1; localCoords_(1,14) = 1;
localCoords_(2,8) = -1; localCoords_(2,14) = 0;
//
localCoords_(0,9) = 1; localCoords_(0,15) = -1;
localCoords_(1,9) = 0; localCoords_(1,15) = 1;
localCoords_(2,9) = -1; localCoords_(2,15) = 0;
//
localCoords_(0,10) = 0; localCoords_(0,16) = 0;
localCoords_(1,10) = 1; localCoords_(1,16) = -1;
localCoords_(2,10) = -1; localCoords_(2,16) = 1;
//
localCoords_(0,11) = -1; localCoords_(0,17) = 1;
localCoords_(1,11) = 0; localCoords_(1,17) = 0;
localCoords_(2,11) = -1; localCoords_(2,17) = 1;
//
localCoords_(0,12) = -1; localCoords_(0,18) = 0;
localCoords_(1,12) = -1; localCoords_(1,18) = 1;
localCoords_(2,12) = 0; localCoords_(2,18) = 1;
//
localCoords_(0,13) = 1; localCoords_(0,19) = -1;
localCoords_(1,13) = -1; localCoords_(1,19) = 0;
localCoords_(2,13) = 0; localCoords_(2,19) = 1;
if (numNodes >= 27) {
// only for quads
localCoords_(0,20) = 0; localCoords_(0,24) = 1;
localCoords_(1,20) = 0; localCoords_(1,24) = 0;
localCoords_(2,20) = 0; localCoords_(2,24) = 0;
//
localCoords_(0,21) = 0; localCoords_(0,25) = 0;
localCoords_(1,21) = 0; localCoords_(1,25) = -1;
localCoords_(2,21) = -1; localCoords_(2,25) = 0;
//
localCoords_(0,22) = 0; localCoords_(0,26) = 0;
localCoords_(1,22) = 0; localCoords_(1,26) = 1;
localCoords_(2,22) = 1; localCoords_(2,26) = 0;
//
localCoords_(0,23) = -1;
localCoords_(1,23) = 0;
localCoords_(2,23) = 0;
}
}
// Matrix of local face connectivity
// -x // +x
localFaceConn_(0,0) = 0; localFaceConn_(1,0) = 1;
localFaceConn_(0,1) = 4; localFaceConn_(1,1) = 2;
localFaceConn_(0,2) = 7; localFaceConn_(1,2) = 6;
localFaceConn_(0,3) = 3; localFaceConn_(1,3) = 5;
if (numNodes >= 20) {
localFaceConn_(0,4) = 12; localFaceConn_(1,4) = 9;
localFaceConn_(0,5) = 19; localFaceConn_(1,5) = 14;
localFaceConn_(0,6) = 15; localFaceConn_(1,6) = 17;
localFaceConn_(0,7) = 11; localFaceConn_(1,7) = 13;
if (numNodes >= 27) {
localFaceConn_(0,8) = 23; localFaceConn_(1,8) = 24;
}
}
// -y // +y
localFaceConn_(2,0) = 0; localFaceConn_(3,0) = 3;
localFaceConn_(2,1) = 1; localFaceConn_(3,1) = 7;
localFaceConn_(2,2) = 5; localFaceConn_(3,2) = 6;
localFaceConn_(2,3) = 4; localFaceConn_(3,3) = 2;
if (numNodes >= 20) {
localFaceConn_(2,4) = 8; localFaceConn_(3,4) = 15;
localFaceConn_(2,5) = 13; localFaceConn_(3,5) = 18;
localFaceConn_(2,6) = 16; localFaceConn_(3,6) = 14;
localFaceConn_(2,7) = 12; localFaceConn_(3,7) = 10;
if (numNodes >= 27) {
localFaceConn_(2,8) = 25; localFaceConn_(3,8) = 26;
}
}
// -z // +z
localFaceConn_(4,0) = 0; localFaceConn_(5,0) = 4;
localFaceConn_(4,1) = 3; localFaceConn_(5,1) = 5;
localFaceConn_(4,2) = 2; localFaceConn_(5,2) = 6;
localFaceConn_(4,3) = 1; localFaceConn_(5,3) = 7;
if (numNodes >= 20) {
localFaceConn_(4,4) = 8; localFaceConn_(5,4) = 16;
localFaceConn_(4,5) = 11; localFaceConn_(5,5) = 17;
localFaceConn_(4,6) = 10; localFaceConn_(5,6) = 18;
localFaceConn_(4,7) = 9; localFaceConn_(5,7) = 19;
if (numNodes >= 27) {
localFaceConn_(4,8) = 21; localFaceConn_(5,8) = 22;
}
}
if (numNodes == 8) {
feInterpolate_ = new FE_InterpolateCartLin(this);
} else if (numNodes == 20) {
feInterpolate_ = new FE_InterpolateCartSerendipity(this);
} else if (numNodes == 27) {
feInterpolate_ = new FE_InterpolateCartLagrange(this);
}
// determine alignment and skewness to see which guess we should use
}
FE_ElementHex::~FE_ElementHex()
{
// Handled by base class
}
void FE_ElementHex::set_quadrature(FeIntQuadrature type)
{
feInterpolate_->set_quadrature(HEXA,type);
}
bool FE_ElementHex::contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const
{
if (! range_check(eltCoords,x) ) return false;
DENS_VEC xi;
bool converged = local_coordinates(eltCoords,x,xi);
if (!converged) return false;
for (int i=0; i<nSD_; ++i) {
if (!dbl_geq(1.0,abs(xi(i)))) return false;
}
return true;
}
// =============================================================
// class FE_ElementRect
// =============================================================
FE_ElementRect::FE_ElementRect()
: FE_ElementHex(8,4,2)
{
// Handled by hex class
}
FE_ElementRect::~FE_ElementRect()
{
// Handled by base class
}
bool FE_ElementRect::contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const
{
return range_check(eltCoords,x);
}
// much faster than the unstructured method
bool FE_ElementRect::local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const
{
xi.reset(nSD_);
double min = 0.0;
double max = 0.0;
for (int iSD=0; iSD<nSD_; ++iSD) {
min = eltCoords(iSD,0);
max = eltCoords(iSD,6);
xi(iSD) = 2.0*(x(iSD)-min)/(max-min) - 1.0;
}
return true;
}
// =============================================================
// class FE_ElementTet
// =============================================================
FE_ElementTet::FE_ElementTet(int numNodes,
int numFaceNodes,
int numNodes1d)
: FE_Element(3, // number of spatial dimensions
4, // number of faces
numNodes,
numFaceNodes,
numNodes1d)
{
// t
// ^
// |
// |
// s
// 3 .7
// |\```--- .
// | \ ```--2 .
// | \ .|
// | \ . |
// | . \ |
// | . \ |
// |.___________\| -------> r
// 0 1
//
// (This is as dictated by the EXODUSII standard.)
//
// The face opposite point 1 has r = 0,
// 2 has s = 0,
// 3 has t = 0,
// 0 has u = 0.
// Basic properties of element:
vol_ = 1.0/6.0; // local volume
faceArea_ = 1.0/2.0;
// Order-specific information:
if (numNodes != 4 && numNodes != 10) {
throw ATC_Error("Unrecognized interpolation order specified "
"for element class: \n"
" element only knows how to construct lin "
"and quad elments.");
}
localCoords_.resize(nSD_+1, numNodes_);
localFaceConn_ = Array2D<int>(numFaces_,numFaceNodes_);
// Matrix of local nodal coordinates
//
// Remember, there's actually another coordinate too (u), coming
// out from the third non-normal face. But we can deal with it on
// the fly; these coordinates are barycentric, such that
// r + s + t + u = 1 always. As such we only need to deal with r,
// s, and t and the computations become easy.
//
// The first three axes correspond to x, y, and z (essentially),
// for the canonical element.
// Everyone gets these nodes...
localCoords_(0,0) = 0; localCoords_(0,2) = 0;
localCoords_(1,0) = 0; localCoords_(1,2) = 1;
localCoords_(2,0) = 0; localCoords_(2,2) = 0;
localCoords_(3,0) = 1; localCoords_(3,2) = 0;
//
localCoords_(0,1) = 1; localCoords_(0,3) = 0;
localCoords_(1,1) = 0; localCoords_(1,3) = 0;
localCoords_(2,1) = 0; localCoords_(2,3) = 1;
localCoords_(3,1) = 0; localCoords_(3,3) = 0;
if (numNodes >= 10) {
// ...quads get even more!
localCoords_(0,4) = 0.5; localCoords_(0,5) = 0.5;
localCoords_(1,4) = 0.0; localCoords_(1,5) = 0.5;
localCoords_(2,4) = 0.0; localCoords_(2,5) = 0.0;
localCoords_(3,4) = 0.5; localCoords_(3,5) = 0.0;
//
localCoords_(0,6) = 0.0; localCoords_(0,7) = 0.0;
localCoords_(1,6) = 0.5; localCoords_(1,7) = 0.0;
localCoords_(2,6) = 0.0; localCoords_(2,7) = 0.5;
localCoords_(3,6) = 0.5; localCoords_(3,7) = 0.5;
//
localCoords_(0,8) = 0.5; localCoords_(0,9) = 0.0;
localCoords_(1,8) = 0.0; localCoords_(1,9) = 0.5;
localCoords_(2,8) = 0.5; localCoords_(2,9) = 0.5;
localCoords_(3,8) = 0.0; localCoords_(3,9) = 0.0;
}
// Matrix of local face connectivity:
// ...opposite point 0, ...opposite point 2,
localFaceConn_(0,0) = 1; localFaceConn_(2,0) = 0;
localFaceConn_(0,1) = 2; localFaceConn_(2,1) = 1;
localFaceConn_(0,2) = 3; localFaceConn_(2,2) = 3;
// ...opposite point 1, ...opposite point 3.
localFaceConn_(1,0) = 2; localFaceConn_(3,0) = 0;
localFaceConn_(1,1) = 0; localFaceConn_(3,1) = 2;
localFaceConn_(1,2) = 3; localFaceConn_(3,2) = 1;
feInterpolate_ = new FE_InterpolateSimpLin(this);
}
FE_ElementTet::~FE_ElementTet()
{
// Handled by base class
}
void FE_ElementTet::set_quadrature(FeIntQuadrature type)
{
feInterpolate_->set_quadrature(TETRA,type);
}
bool FE_ElementTet::local_coordinates(const DENS_MAT &eltCoords,
const DENS_VEC &x,
DENS_VEC &xi) const
{
DENS_MAT T(nSD_, numNodes_-1);
DENS_VEC r(nSD_);
for (int iSD=0; iSD<nSD_; ++iSD) {
for (int inode=1; inode<numNodes_; ++inode) {
T(iSD, inode-1) = eltCoords(iSD, inode) -
eltCoords(iSD, 0);
}
r(iSD) = x(iSD) - eltCoords(iSD, 0);
}
MultMv(inv(T), r, xi, false, 1.0, 0.0);
return true;
}
bool FE_ElementTet::contains_point(const DENS_MAT &eltCoords,
const DENS_VEC &x) const
{
if (! range_check(eltCoords,x) ) return false;
DENS_VEC xi(nSD_);
bool converged = local_coordinates(eltCoords, x, xi);
if (! converged) return false;
double sum = 0.0;
bool inside = true;
for (int iSD = 0; iSD < nSD_; ++iSD) {
if (dbl_geq(xi(iSD),1.0) || dbl_geq(0.0,xi(iSD))) {
inside = false;
break;
}
sum += xi(iSD);
}
if (dbl_geq(sum,1.0)) inside = false;
return inside;
}
}; // namespace ATC