lammps/lib/atc/ATC_TransferKernel.cpp

486 lines
18 KiB
C++

// ATC headers
#include "ATC_TransferKernel.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "KernelFunction.h"
#include "LammpsInterface.h"
#include "Quadrature.h"
#include "PerPairQuantity.h"
#include "Stress.h"
#ifdef HAS_DXA
#include "DislocationExtractor.h"
#endif
// Other Headers
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <fstream>
#include <exception>
using namespace std;
namespace ATC {
using ATC_Utility::to_string;
ATC_TransferKernel::ATC_TransferKernel(string groupName,
double **& perAtomArray,
LAMMPS_NS::Fix * thisFix,
string matParamFile)
: ATC_Transfer(groupName,perAtomArray,thisFix,matParamFile)
{
kernelBased_ = true;
}
//-------------------------------------------------------------------
ATC_TransferKernel::~ATC_TransferKernel()
{
}
//-------------------------------------------------------------------
bool ATC_TransferKernel::modify(int narg, char **arg)
{
bool match = false;
/*! \page man_hardy_kernel fix_modify AtC kernel
\section syntax
fix_modify AtC kernel <type> <parameters>
- type (keyword) = step, cell, cubic_bar, cubic_cylinder, cubic_sphere,
quartic_bar, quartic_cylinder, quartic_sphere \n
- parameters :\n
step = radius (double) \n
cell = hx, hy, hz (double) or h (double) \n
cubic_bar = half-width (double) \n
cubic_cylinder = radius (double) \n
cubic_sphere = radius (double) \n
quartic_bar = half-width (double) \n
quartic_cylinder = radius (double) \n
quartic_sphere = radius (double) \n
\section examples
<TT> fix_modify AtC kernel cell 1.0 1.0 1.0 </TT> \n
<TT> fix_modify AtC kernel quartic_sphere 10.0 </TT>
\section description
\section restrictions
Must be used with the hardy AtC fix \n
For bar kernel types, half-width oriented along x-direction \n
For cylinder kernel types, cylindrical axis is assumed to be in z-direction \n
( see \ref man_fix_atc )
\section related
\section default
No default
*/
// no match, call base class parser
if (!match) {
match = ATC_Transfer::modify(narg, arg);
}
return match;
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_kernel_matrix_molecule(void) // KKM add
{
int nLocalMol = smallMoleculeSet_->local_molecule_count();
if (nLocal_>0) {
SPAR_MAT & N(kernelAccumulantMol_.set_quantity());
N.reset(nLocalMol,nNodes_);
SPAR_MAT & dN(kernelAccumulantMolGrad_.set_quantity());
dN.reset(nLocalMol,nNodes_);
DENS_VEC derivKer(nsd_);
DENS_VEC xI(nsd_),xm(nsd_),xmI(nsd_);
const DENS_MAT & centroidMolMatrix(moleculeCentroid_->quantity());
ATC::LammpsInterface::instance()->stream_msg_once("computing kernel matrix molecule ",true,false);
int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
for (int i = 0; i < nNodes_; i++) {
if (i % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
for (int j = 0; j < nLocalMol; j++) {
for (int k = 0; k < nsd_; k++) {
xm(k) = centroidMolMatrix(j,k);
}
xmI = xm - xI;
lammpsInterface_->periodicity_correction(xmI.ptr());
double val = kernelFunction_->value(xmI);
if (val > 0) N.add(j,i,val);
kernelFunction_->derivative(xmI,derivKer);
double val_grad = derivKer(2);
if (val_grad!= 0) dN.add(j,i,val_grad);
}
}
// reset kernelShpFunctions with the weights of molecules on processors
DENS_VEC fractions(N.nRows());
DENS_VEC fractions_deriv(dN.nRows());
for (int i = 0; i < nLocalMol; i++) {
fractions(i) = smallMoleculeSet_->local_fraction(i);
}
N.row_scale(fractions);
N.compress();
dN.row_scale(fractions);
dN.compress();
if (lammpsInterface_->rank_zero()) {
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
}
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_projection(const DENS_MAT & atomData,
DENS_MAT & nodeData)
{
DENS_MAT workNodeArray(nNodes_, atomData.nCols());
workNodeArray.zero();
nodeData.reset(workNodeArray.nRows(),workNodeArray.nCols());
nodeData.zero();
if (nLocal_>0) {
set_xPointer();
DENS_VEC xI(nsd_),xa(nsd_),xaI(nsd_);
double val;
for (int i = 0; i < nNodes_; i++) {
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
for (int j = 0; j < nLocal_; j++) {
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
val = kernelFunction_->value(xaI);
if (val > 0) {
for (int k=0; k < atomData.nCols(); k++) {
workNodeArray(i,k) += val*atomData(j,k);
}
}
}
}
}
// accumulate across processors
int count = workNodeArray.nRows()*workNodeArray.nCols();
lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_bond_matrix()
{
atomicBondMatrix_=bondMatrix_->quantity();
}
//-------------------------------------------------------------------
// on-the-fly calculation of stress
void ATC_TransferKernel::compute_potential_stress(DENS_MAT& stress)
{
set_xPointer();
stress.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
double lam1,lam2;
double bond_value;
// process differently for mesh vs translation-invariant kernels
ATC::LammpsInterface::instance()->stream_msg_once("computing potential stress: ",true,false);
int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
// "normal" kernel functions
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
for (int i = 0; i < nNodes_; i++) {
if (i % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
// point
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
int inode = i;
for (int j = 0; j < nLocal_; j++) {
// second (neighbor) atom location
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
// difference vector
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// first atom location
xb.copy(xPointer_[lammps_k],3);
// difference vector
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
// compute virial
if (lam1 < lam2) {
bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // dbl count
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
stress(inode,0) +=-delx*fforce*delX*bond_value;
stress(inode,1) +=-delx*fforce*delY*bond_value;
stress(inode,2) +=-delx*fforce*delZ*bond_value;
stress(inode,3) +=-dely*fforce*delX*bond_value;
stress(inode,4) +=-dely*fforce*delY*bond_value;
stress(inode,5) +=-dely*fforce*delZ*bond_value;
stress(inode,6) +=-delz*fforce*delX*bond_value;
stress(inode,7) +=-delz*fforce*delY*bond_value;
stress(inode,8) +=-delz*fforce*delZ*bond_value;
}
else { //EULERIAN
stress(inode,0) +=-delx*delx*fforce*bond_value;
stress(inode,1) +=-dely*dely*fforce*bond_value;
stress(inode,2) +=-delz*delz*fforce*bond_value;
stress(inode,3) +=-delx*dely*fforce*bond_value;
stress(inode,4) +=-delx*delz*fforce*bond_value;
stress(inode,5) +=-dely*delz*fforce*bond_value;
}
}
}
}
}
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
//-------------------------------------------------------------------
// on-the-fly calculation of the heat flux
void ATC_TransferKernel::compute_potential_heatflux(DENS_MAT& flux)
{
set_xPointer();
flux.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
double ** vatom = lammpsInterface_->vatom();
double lam1,lam2;
double bond_value;
// process differently for mesh vs translation-invariant kernels
// "normal" kernel functions
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
for (int i = 0; i < nNodes_; i++) {
int inode = i;
// point
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
for (int j = 0; j < nLocal_; j++) {
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
// difference vector
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// first atom location
xb.copy(xPointer_[lammps_k],3);
// difference vector
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
// compute virial
if (lam1 < lam2) {
bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // dbl count
double * v = vatom[lammps_j];
fforce *= (delx*v[0] + dely*v[1] + delz*v[2]);
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
flux(inode,0) +=fforce*delX*bond_value;
flux(inode,1) +=fforce*delY*bond_value;
flux(inode,2) +=fforce*delZ*bond_value;
}
else { // EULERIAN
flux(inode,0) +=fforce*delx*bond_value;
flux(inode,1) +=fforce*dely*bond_value;
flux(inode,2) +=fforce*delz*bond_value;
}
}
}
}
}
}
//-------------------------------------------------------------------
// calculation of the dislocation density tensor
void ATC_TransferKernel::compute_dislocation_density(DENS_MAT & A)
{
A.reset(nNodes_,9);
#ifdef HAS_DXA
double cnaCutoff = lammpsInterface_->near_neighbor_cutoff();
// Extract dislocation lines within the processor's domain.
DXADislocationExtractor extractor(lammpsInterface_->lammps_pointer(),dxaExactMode_);
extractor.extractDislocations(lammpsInterface_->neighbor_list(), cnaCutoff);
// Calculate scalar dislocation density and density tensor.
double dislocationDensity = 0.0;
double dislocationDensityTensor[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
const std::vector<DislocationSegment*>& segments = extractor.getSegments();
int localNumberLines = (int) segments.size();
int totalNumberLines;
lammpsInterface_->int_allsum(&localNumberLines,&totalNumberLines,1);
if (totalNumberLines == 0) {
ATC::LammpsInterface::instance()->print_msg_once("no dislocation lines found");
return;
}
// for output
int nPt = 0, nSeg = 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
nPt += line.size();
nSeg += line.size()-1;
}
DENS_MAT segCoor(3,nPt);
Array2D<int> segConn(2,nSeg);
DENS_MAT segBurg(nPt,3);
DENS_MAT local_A(nNodes_,9);
local_A.zero();
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
int iPt = 0, iSeg= 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
Vector3 burgers = segment->burgersVectorWorld;
Point3 x1, x2;
for(std::deque<Point3>::const_iterator p1 = line.begin(), p2 = line.begin() + 1; p2 < line.end(); ++p1, ++p2) {
x1 = (*p1);
x2 = (*p2);
Vector3 delta = x2 - x1;
// totals
dislocationDensity += Length(delta);
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
dislocationDensityTensor[3*j+i] += delta[i] * burgers[j];
}
}
// nodal partition
for(int k = 0; k < 3; k++) {
xa(k) = x1[k];
xb(k) = x2[k];
xba(k) = delta[k];
}
for (int I = 0; I < nNodes_; I++) {
xI = (feEngine_->fe_mesh())->nodal_coordinates(I);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
xbI = xba + xaI;
double lam1=0,lam2=0;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
if (lam1 < lam2) {
double bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
local_A(I,0) += xba(0)*burgers[0]*bond_value;
local_A(I,1) += xba(0)*burgers[1]*bond_value;
local_A(I,2) += xba(0)*burgers[2]*bond_value;
local_A(I,3) += xba(1)*burgers[0]*bond_value;
local_A(I,4) += xba(1)*burgers[1]*bond_value;
local_A(I,5) += xba(1)*burgers[2]*bond_value;
local_A(I,6) += xba(2)*burgers[0]*bond_value;
local_A(I,7) += xba(2)*burgers[1]*bond_value;
local_A(I,8) += xba(2)*burgers[2]*bond_value;
}
}
segCoor(0,iPt) = x1[0];
segCoor(1,iPt) = x1[1];
segCoor(2,iPt) = x1[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
segConn(0,iSeg) = iPt;
segConn(1,iSeg) = iPt+1;
iPt++;
iSeg++;
}
segCoor(0,iPt) = x2[0];
segCoor(1,iPt) = x2[1];
segCoor(2,iPt) = x2[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
iPt++;
}
int count = nNodes_*9;
lammpsInterface_->allsum(local_A.ptr(),A.ptr(),count);
double totalDislocationDensity;
lammpsInterface_->allsum(&dislocationDensity,&totalDislocationDensity,1);
double totalDislocationDensityTensor[9];
lammpsInterface_->allsum(dislocationDensityTensor,totalDislocationDensityTensor,9);
int totalNumberSegments;
lammpsInterface_->int_allsum(&nSeg,&totalNumberSegments,1);
// output
double volume = lammpsInterface_->domain_volume();
stringstream ss;
ss << "total dislocation line length = " << totalDislocationDensity;
ss << " lines = " << totalNumberLines << " segments = " << totalNumberSegments;
ss << "\n ";
ss << "total dislocation density tensor = \n";
for(int i = 0; i < 3; i++) {
ss << " ";
for(int j = 0; j < 3; j++) {
totalDislocationDensityTensor[3*j+i] /= volume;
ss << totalDislocationDensityTensor[3*j+i] << " ";
}
ss << "\n";
}
ATC::LammpsInterface::instance()->print_msg_once(ss.str());
if (nSeg > 0) {
set<int> otypes;
otypes.insert(VTK);
otypes.insert(FULL_GNUPLOT);
string name = "dislocation_segments_step=" ;
name += to_string(output_index());
OutputManager segOutput(name,otypes);
segOutput.write_geometry(&segCoor,&segConn);
OUTPUT_LIST segOut;
segOut["burgers_vector"] = &segBurg;
segOutput.write_data(0,&segOut);
}
#else
throw ATC_Error("unimplemented function compute_dislocation_density (DXA support not included");
#endif
}
} // end namespace ATC