forked from lijiext/lammps
190 lines
5.3 KiB
Fortran
190 lines
5.3 KiB
Fortran
*> \brief \b DLAED5 used by sstedc. Solves the 2-by-2 secular equation.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAED5 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed5.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed5.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed5.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER I
|
|
* DOUBLE PRECISION DLAM, RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> This subroutine computes the I-th eigenvalue of a symmetric rank-one
|
|
*> modification of a 2-by-2 diagonal matrix
|
|
*>
|
|
*> diag( D ) + RHO * Z * transpose(Z) .
|
|
*>
|
|
*> The diagonal elements in the array D are assumed to satisfy
|
|
*>
|
|
*> D(i) < D(j) for i < j .
|
|
*>
|
|
*> We also assume RHO > 0 and that the Euclidean norm of the vector
|
|
*> Z is one.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] I
|
|
*> \verbatim
|
|
*> I is INTEGER
|
|
*> The index of the eigenvalue to be computed. I = 1 or I = 2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (2)
|
|
*> The original eigenvalues. We assume D(1) < D(2).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension (2)
|
|
*> The components of the updating vector.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DELTA
|
|
*> \verbatim
|
|
*> DELTA is DOUBLE PRECISION array, dimension (2)
|
|
*> The vector DELTA contains the information necessary
|
|
*> to construct the eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RHO
|
|
*> \verbatim
|
|
*> RHO is DOUBLE PRECISION
|
|
*> The scalar in the symmetric updating formula.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DLAM
|
|
*> \verbatim
|
|
*> DLAM is DOUBLE PRECISION
|
|
*> The computed lambda_I, the I-th updated eigenvalue.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date September 2012
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Ren-Cang Li, Computer Science Division, University of California
|
|
*> at Berkeley, USA
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* September 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER I
|
|
DOUBLE PRECISION DLAM, RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TWO, FOUR
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
|
|
$ FOUR = 4.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION B, C, DEL, TAU, TEMP, W
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
DEL = D( 2 ) - D( 1 )
|
|
IF( I.EQ.1 ) THEN
|
|
W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
|
|
IF( W.GT.ZERO ) THEN
|
|
B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
|
|
C = RHO*Z( 1 )*Z( 1 )*DEL
|
|
*
|
|
* B > ZERO, always
|
|
*
|
|
TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
|
|
DLAM = D( 1 ) + TAU
|
|
DELTA( 1 ) = -Z( 1 ) / TAU
|
|
DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
|
|
ELSE
|
|
B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
|
|
C = RHO*Z( 2 )*Z( 2 )*DEL
|
|
IF( B.GT.ZERO ) THEN
|
|
TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
|
|
ELSE
|
|
TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
|
|
END IF
|
|
DLAM = D( 2 ) + TAU
|
|
DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
|
|
DELTA( 2 ) = -Z( 2 ) / TAU
|
|
END IF
|
|
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
|
|
DELTA( 1 ) = DELTA( 1 ) / TEMP
|
|
DELTA( 2 ) = DELTA( 2 ) / TEMP
|
|
ELSE
|
|
*
|
|
* Now I=2
|
|
*
|
|
B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
|
|
C = RHO*Z( 2 )*Z( 2 )*DEL
|
|
IF( B.GT.ZERO ) THEN
|
|
TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
|
|
ELSE
|
|
TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
|
|
END IF
|
|
DLAM = D( 2 ) + TAU
|
|
DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
|
|
DELTA( 2 ) = -Z( 2 ) / TAU
|
|
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
|
|
DELTA( 1 ) = DELTA( 1 ) / TEMP
|
|
DELTA( 2 ) = DELTA( 2 ) / TEMP
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End OF DLAED5
|
|
*
|
|
END
|