lammps/lib/cuda/pair_sw_cuda_kernel_nc.cu

451 lines
14 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#define Pi F_F(3.1415926535897932384626433832795)
#define PI Pi
#define PI2 F_F(0.5)*Pi
#define PI4 F_F(0.25)*Pi
__device__ void twobody(int iparam, F_FLOAT rsq, F_FLOAT &fforce,
int eflag, ENERGY_FLOAT &eng)
{
F_FLOAT r,rp,rq,rainv,expsrainv;
r = sqrt(rsq);
rp = pow(r,-params_sw[iparam].powerp);
rq = pow(r,-params_sw[iparam].powerq);
rainv = 1.0 / (r - params_sw[iparam].cut);
expsrainv = exp(params_sw[iparam].sigma * rainv);
fforce = (params_sw[iparam].c1*rp - params_sw[iparam].c2*rq +
(params_sw[iparam].c3*rp -params_sw[iparam].c4*rq) * rainv*rainv*r) * expsrainv / rsq;
if (eflag) eng += (params_sw[iparam].c5*rp - params_sw[iparam].c6*rq) * expsrainv;
}
__device__ void threebody(int paramij, int paramik, int paramijk,
F_FLOAT4& delr1,
F_FLOAT4& delr2,
F_FLOAT3& fj, F_FLOAT3& fk, int eflag,ENERGY_FLOAT &eng)
{
F_FLOAT r1,rinvsq1,rainv1,gsrainv1,gsrainvsq1,expgsrainv1;
F_FLOAT r2,rinvsq2,rainv2,gsrainv2,gsrainvsq2,expgsrainv2;
F_FLOAT rinv12,cs,delcs,delcssq,facexp,facrad,frad1,frad2;
F_FLOAT facang,facang12,csfacang,csfac1,csfac2;
r1 = sqrt(delr1.w);
rinvsq1 = F_F(1.0)/delr1.w;
rainv1 = F_F(1.0)/(r1 - params_sw[paramij].cut);
gsrainv1 = params_sw[paramij].sigma_gamma * rainv1;
gsrainvsq1 = gsrainv1*rainv1/r1;
expgsrainv1 = exp(gsrainv1);
r2 = sqrt(delr2.w);
rinvsq2 = F_F(1.0)/delr2.w;
rainv2 = F_F(1.0)/(r2 - params_sw[paramik].cut);
gsrainv2 = params_sw[paramik].sigma_gamma * rainv2;
gsrainvsq2 = gsrainv2*rainv2/r2;
expgsrainv2 = exp(gsrainv2);
rinv12 = F_F(1.0)/(r1*r2);
cs = (delr1.x*delr2.x + delr1.y*delr2.y + delr1.z*delr2.z) * rinv12;
delcs = cs - params_sw[paramijk].costheta;
delcssq = delcs*delcs;
facexp = expgsrainv1*expgsrainv2;
// facrad = sqrt(paramij->lambda_epsilon*paramik->lambda_epsilon) *
// facexp*delcssq;
facrad = params_sw[paramijk].lambda_epsilon * facexp*delcssq;
frad1 = facrad*gsrainvsq1;
frad2 = facrad*gsrainvsq2;
facang = params_sw[paramijk].lambda_epsilon2 * facexp*delcs;
facang12 = rinv12*facang;
csfacang = cs*facang;
csfac1 = rinvsq1*csfacang;
fj.x = delr1.x*(frad1+csfac1)-delr2.x*facang12;
fj.y = delr1.y*(frad1+csfac1)-delr2.y*facang12;
fj.z = delr1.z*(frad1+csfac1)-delr2.z*facang12;
csfac2 = rinvsq2*csfacang;
fk.x = delr2.x*(frad2+csfac2)-delr1.x*facang12;
fk.y = delr2.y*(frad2+csfac2)-delr1.y*facang12;
fk.z = delr2.z*(frad2+csfac2)-delr1.z*facang12;
if (eflag) eng+= F_F(2.0)*facrad;
}
__device__ void threebody_fj(int paramij, int paramik, int paramijk,
F_FLOAT4& delr1,
F_FLOAT4& delr2,
F_FLOAT3& fj)
{
F_FLOAT r1,rinvsq1,rainv1,gsrainv1,gsrainvsq1,expgsrainv1;
F_FLOAT r2,rainv2,gsrainv2,expgsrainv2;
F_FLOAT rinv12,cs,delcs,delcssq,facexp,facrad,frad1;
F_FLOAT facang,facang12,csfacang,csfac1;
r1 = sqrt(delr1.w);
rinvsq1 = F_F(1.0)/delr1.w;
rainv1 = F_F(1.0)/(r1 - params_sw[paramij].cut);
gsrainv1 = params_sw[paramij].sigma_gamma * rainv1;
gsrainvsq1 = gsrainv1*rainv1/r1;
expgsrainv1 = exp(gsrainv1);
r2 = sqrt(delr2.w);
rainv2 = F_F(1.0)/(r2 - params_sw[paramik].cut);
gsrainv2 = params_sw[paramik].sigma_gamma * rainv2;
expgsrainv2 = exp(gsrainv2);
rinv12 = F_F(1.0)/(r1*r2);
cs = (delr1.x*delr2.x + delr1.y*delr2.y + delr1.z*delr2.z) * rinv12;
delcs = cs - params_sw[paramijk].costheta;
delcssq = delcs*delcs;
facexp = expgsrainv1*expgsrainv2;
// facrad = sqrt(paramij->lambda_epsilon*paramik->lambda_epsilon) *
// facexp*delcssq;
facrad = params_sw[paramijk].lambda_epsilon * facexp*delcssq;
frad1 = facrad*gsrainvsq1;
facang = params_sw[paramijk].lambda_epsilon2 * facexp*delcs;
facang12 = rinv12*facang;
csfacang = cs*facang;
csfac1 = rinvsq1*csfacang;
fj.x = delr1.x*(frad1+csfac1)-delr2.x*facang12;
fj.y = delr1.y*(frad1+csfac1)-delr2.y*facang12;
fj.z = delr1.z*(frad1+csfac1)-delr2.z*facang12;
}
__global__ void Pair_SW_Kernel_TpA_RIJ()//F_FLOAT4* _glob_r_ij,int* _glob_numneigh_red,int* _glob_neighbors_red,int* _glob_neightype_red)
{
int ii = (blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
if( ii >= _nall ) return;
X_FLOAT4 myxtype;
F_FLOAT4 delij;
F_FLOAT xtmp,ytmp,ztmp;
int itype,jnum,i,j;
int* jlist;
int neigh_red = 0;
i = ii;//_ilist[ii];
myxtype = fetchXType(i);
xtmp=myxtype.x;
ytmp=myxtype.y;
ztmp=myxtype.z;
itype=map[(static_cast <int> (myxtype.w))];
jnum = _numneigh[i];
jlist = &_neighbors[i];
__syncthreads();
for (int jj = 0; jj < jnum; jj++)
{
if(jj<jnum)
{
j = jlist[jj*_nall];
j &= NEIGHMASK;
myxtype = fetchXType(j);
delij.x = xtmp - myxtype.x;
delij.y = ytmp - myxtype.y;
delij.z = ztmp - myxtype.z;
int jtype = map[(static_cast <int> (myxtype.w))];
int iparam_ij = elem2param[(itype*nelements+jtype)*nelements+jtype];
delij.w = vec3_dot(delij,delij);
if (delij.w < params_sw[iparam_ij].cutsq)
{
_glob_neighbors_red[i+neigh_red*_nall]=j;
_glob_neightype_red[i+neigh_red*_nall]=jtype;
_glob_r_ij[i+neigh_red*_nall]=delij;
neigh_red++;
}
}
}
_glob_numneigh_red[i]=neigh_red;
}
template <int eflag, int vflagm>
__global__ void Pair_SW_Kernel_TpA(int eflag_atom,int vflag_atom)//,F_FLOAT* _glob_zeta_ij,F_FLOAT4* _glob_r_ij,int* _glob_numneigh_red,int* _glob_neighbors_red,int* _glob_neightype_red)
{
ENERGY_FLOAT evdwl = ENERGY_F(0.0);
ENERGY_FLOAT* sharedE = &sharedmem[threadIdx.x];
ENERGY_FLOAT* sharedV = &sharedmem[threadIdx.x];
F_FLOAT* shared_F_F = (F_FLOAT*) sharedmem;
if((eflag||eflag_atom)&&(vflagm||vflag_atom)) shared_F_F = (F_FLOAT*) &sharedmem[7*blockDim.x];
else
if(eflag) shared_F_F = (F_FLOAT*) &sharedmem[blockDim.x];
else
if(vflagm) shared_F_F = (F_FLOAT*) &sharedmem[6*blockDim.x];
shared_F_F+=threadIdx.x;
if(eflag_atom||eflag)
{
sharedE[0] = ENERGY_F(0.0);
sharedV += blockDim.x;
}
if(vflagm||vflag_atom)
{
sharedV[0*blockDim.x] = ENERGY_F(0.0);
sharedV[1*blockDim.x] = ENERGY_F(0.0);
sharedV[2*blockDim.x] = ENERGY_F(0.0);
sharedV[3*blockDim.x] = ENERGY_F(0.0);
sharedV[4*blockDim.x] = ENERGY_F(0.0);
sharedV[5*blockDim.x] = ENERGY_F(0.0);
}
int jnum_red=0;
#define fxtmp shared_F_F[0]
#define fytmp shared_F_F[blockDim.x]
#define fztmp shared_F_F[2*blockDim.x]
//#define jnum_red (static_cast <int> (shared_F_F[3*blockDim.x]))
int ii = (blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
X_FLOAT4 myxtype_i,myxtype_j,myxtype_k;
F_FLOAT4 delij,delik,deljk;
F_FLOAT fpair;
int itype,i,j;
int* jlist_red;
if(ii < _inum)
{
i = _ilist[ii];
if(vflagm)
myxtype_i=fetchXType(i);
//itype=map[(static_cast <int> (myxtype_i.w))];
itype=map[_type[i]];
fxtmp = F_F(0.0);
fytmp = F_F(0.0);
fztmp = F_F(0.0);
//shared_F_F[3*blockDim.x] = _glob_numneigh_red[i];
jnum_red = _glob_numneigh_red[i];
jlist_red = &_glob_neighbors_red[i];
}
__syncthreads();
#pragma unroll 1
for (int jj = 0; jj < jnum_red; jj++)
{
if(i < _nlocal)
{
fpair=F_F(0.0);
j = jlist_red[jj*_nall];
j &= NEIGHMASK;
if(vflagm)
myxtype_j = fetchXType(j);
int jtype = _glob_neightype_red[i+jj*_nall];
delij = _glob_r_ij[i+jj*_nall];
volatile int iparam_ij = elem2param[(itype*nelements+jtype)*nelements+jtype];
volatile int iparam_ji = elem2param[(jtype*nelements+itype)*nelements+itype];
if (delij.w<params_sw[iparam_ij].cutsq)
{
F_FLOAT dxfp,dyfp,dzfp;
twobody(iparam_ij,delij.w,fpair,eflag,evdwl);
fxtmp += dxfp = delij.x*fpair;
fytmp += dyfp = delij.y*fpair;
fztmp += dzfp = delij.z*fpair;
if(vflagm)
{
sharedV[0 * blockDim.x]+= delij.x*dxfp;
sharedV[1 * blockDim.x]+= delij.y*dyfp;
sharedV[2 * blockDim.x]+= delij.z*dzfp;
sharedV[3 * blockDim.x]+= delij.x*dyfp;
sharedV[4 * blockDim.x]+= delij.x*dzfp;
sharedV[5 * blockDim.x]+= delij.y*dzfp;
}
vec3_scale(F_F(-1.0),delij,delij);
#pragma unroll 1
for (int kk = jj+1; kk < jnum_red; kk++) {
int k = jlist_red[kk*_nall];
k &= NEIGHMASK;
if(vflagm)
myxtype_k = fetchXType(k);
delik = _glob_r_ij[i+kk*_nall];
int ktype = _glob_neightype_red[i+kk*_nall];
int iparam_ik = elem2param[(itype*nelements+ktype)*nelements+ktype];
int iparam_ijk = elem2param[(itype*nelements+jtype)*nelements+ktype];
vec3_scale(F_F(-1.0),delik,delik);
if (delik.w <= params_sw[iparam_ijk].cutsq)
{
F_FLOAT3 fj,fk;
threebody(iparam_ij,iparam_ik,iparam_ijk,
delij,delik,fj,fk,eflag,evdwl);
fxtmp -= fj.x + fk.x;
fytmp -= fj.y + fk.y;
fztmp -= fj.z + fk.z;
if(vflagm)
{
sharedV[0 * blockDim.x]-= ENERGY_F(2.0)*myxtype_i.x*(fj.x+fk.x);
sharedV[1 * blockDim.x]-= ENERGY_F(2.0)*myxtype_i.y*(fj.y+fk.y);
sharedV[2 * blockDim.x]-= ENERGY_F(2.0)*myxtype_i.z*(fj.z+fk.z);
sharedV[3 * blockDim.x]-= ENERGY_F(2.0)*myxtype_i.x*(fj.y+fk.y);
sharedV[4 * blockDim.x]-= ENERGY_F(2.0)*myxtype_i.x*(fj.z+fk.z);
sharedV[5 * blockDim.x]-= ENERGY_F(2.0)*myxtype_i.y*(fj.z+fk.z);
sharedV[0 * blockDim.x]+= ENERGY_F(2.0)*myxtype_j.x*fj.x;
sharedV[1 * blockDim.x]+= ENERGY_F(2.0)*myxtype_j.y*fj.y;
sharedV[2 * blockDim.x]+= ENERGY_F(2.0)*myxtype_j.z*fj.z;
sharedV[3 * blockDim.x]+= ENERGY_F(2.0)*myxtype_j.x*fj.y;
sharedV[4 * blockDim.x]+= ENERGY_F(2.0)*myxtype_j.x*fj.z;
sharedV[5 * blockDim.x]+= ENERGY_F(2.0)*myxtype_j.y*fj.z;
sharedV[0 * blockDim.x]+= ENERGY_F(2.0)*myxtype_k.x*fk.x;
sharedV[1 * blockDim.x]+= ENERGY_F(2.0)*myxtype_k.y*fk.y;
sharedV[2 * blockDim.x]+= ENERGY_F(2.0)*myxtype_k.z*fk.z;
sharedV[3 * blockDim.x]+= ENERGY_F(2.0)*myxtype_k.x*fk.y;
sharedV[4 * blockDim.x]+= ENERGY_F(2.0)*myxtype_k.x*fk.z;
sharedV[5 * blockDim.x]+= ENERGY_F(2.0)*myxtype_k.y*fk.z;
}
}
}
int j_jnum_red = _glob_numneigh_red[j];
int* j_jlist_red = &_glob_neighbors_red[j];
int j_ii = 0;
//#pragma unroll 1
for (int j_kk = 0; j_kk < j_jnum_red; j_kk++) {
if(j_jlist_red[j_kk*_nall]==i) j_ii = j_kk;
}
#pragma unroll 1
for (int kk = 0; kk < j_jnum_red; kk++)
{
if (j_ii == kk) continue;
int k = j_jlist_red[kk*_nall];
k &= NEIGHMASK;
deljk = _glob_r_ij[j+kk*_nall];
vec3_scale(F_F(-1.0),deljk,deljk);
int ktype = _glob_neightype_red[j+kk*_nall];
int iparam_ji = elem2param[(jtype*nelements+itype)*nelements+itype];
int iparam_jk = elem2param[(jtype*nelements+ktype)*nelements+ktype];
int iparam_jik = elem2param[(jtype*nelements+itype)*nelements+ktype];
vec3_scale(F_F(-1.0),delij,delij);
if (deljk.w <= params_sw[iparam_jik].cutsq)
{
F_FLOAT3 fj;
threebody_fj(iparam_ji,iparam_jk,iparam_jik,
delij,deljk,fj);
fxtmp += fj.x;
fytmp += fj.y;
fztmp += fj.z;
}
vec3_scale(F_F(-1.0),delij,delij);
}
}
}
}
__syncthreads();
if(ii < _inum)
{
F_FLOAT* my_f;
if(_collect_forces_later)
{
ENERGY_FLOAT* buffer = (ENERGY_FLOAT*) _buffer;
if(eflag)
{
buffer=&buffer[1 * gridDim.x * gridDim.y];
}
if(vflagm)
{
buffer=&buffer[6 * gridDim.x * gridDim.y];
}
my_f = (F_FLOAT*) buffer;
my_f += i;
*my_f = fxtmp; my_f += _nmax;
*my_f = fytmp; my_f += _nmax;
*my_f = fztmp;
}
else
{
my_f = _f + i;
*my_f += fxtmp; my_f += _nmax;
*my_f += fytmp; my_f += _nmax;
*my_f += fztmp;
}
}
__syncthreads();
if(eflag)
{
sharedE[0] = evdwl;
}
if(eflag_atom && i<_nlocal)
{
_eatom[i] = ENERGY_F(0.5) * evdwl;
}
if(vflag_atom && i<_nlocal)
{
_vatom[i] = ENERGY_F(0.5) * sharedV[0 * blockDim.x];
_vatom[i+_nmax] = ENERGY_F(0.5) * sharedV[1 * blockDim.x];
_vatom[i+2*_nmax] = ENERGY_F(0.5) * sharedV[2 * blockDim.x];
_vatom[i+3*_nmax] = ENERGY_F(0.5) * sharedV[3 * blockDim.x];
_vatom[i+4*_nmax] = ENERGY_F(0.5) * sharedV[4 * blockDim.x];
_vatom[i+5*_nmax] = ENERGY_F(0.5) * sharedV[5 * blockDim.x];
}
if(vflagm&&eflag) PairVirialCompute_A_Kernel_Template<1,1>();
else if(eflag) PairVirialCompute_A_Kernel_Template<1,0>();
else if(vflagm) PairVirialCompute_A_Kernel_Template<0,1>();
#undef fxtmp
#undef fytmp
#undef fztmp
//#undef jnum_red
}