forked from lijiext/lammps
1111 lines
31 KiB
C++
1111 lines
31 KiB
C++
#ifndef COLVARTYPES_H
|
|
#define COLVARTYPES_H
|
|
|
|
#include <cmath>
|
|
|
|
#ifndef PI
|
|
#define PI 3.14159265358979323846
|
|
#endif
|
|
|
|
// ----------------------------------------------------------------------
|
|
/// Linear algebra functions and data types used in the collective
|
|
/// variables implemented so far
|
|
// ----------------------------------------------------------------------
|
|
|
|
|
|
/// 1-dimensional vector of real numbers with three components
|
|
class colvarmodule::rvector {
|
|
|
|
public:
|
|
|
|
cvm::real x, y, z;
|
|
|
|
inline rvector()
|
|
: x (0.0), y (0.0), z (0.0)
|
|
{}
|
|
|
|
inline rvector (cvm::real const &x_i,
|
|
cvm::real const &y_i,
|
|
cvm::real const &z_i)
|
|
: x (x_i), y (y_i), z (z_i)
|
|
{}
|
|
|
|
inline rvector (cvm::real v)
|
|
: x (v), y (v), z (v)
|
|
{}
|
|
|
|
/// \brief Set all components to a scalar value
|
|
inline void set (cvm::real const value = 0.0) {
|
|
x = y = z = value;
|
|
}
|
|
|
|
/// \brief Set all components to zero
|
|
inline void reset() {
|
|
x = y = z = 0.0;
|
|
}
|
|
|
|
/// \brief Access cartesian components by index
|
|
inline cvm::real & operator [] (int const &i) {
|
|
return (i == 0) ? x : (i == 1) ? y : (i == 2) ? z : x;
|
|
}
|
|
|
|
/// \brief Access cartesian components by index
|
|
inline cvm::real const & operator [] (int const &i) const {
|
|
return (i == 0) ? x : (i == 1) ? y : (i == 2) ? z : x;
|
|
}
|
|
|
|
|
|
inline cvm::rvector & operator = (cvm::real const &v)
|
|
{
|
|
x = v;
|
|
y = v;
|
|
z = v;
|
|
return *this;
|
|
}
|
|
|
|
inline void operator += (cvm::rvector const &v)
|
|
{
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
}
|
|
|
|
inline void operator -= (cvm::rvector const &v)
|
|
{
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
}
|
|
|
|
inline void operator *= (cvm::real const &v)
|
|
{
|
|
x *= v;
|
|
y *= v;
|
|
z *= v;
|
|
}
|
|
|
|
inline void operator /= (cvm::real const& v)
|
|
{
|
|
x /= v;
|
|
y /= v;
|
|
z /= v;
|
|
}
|
|
|
|
inline cvm::real norm2() const
|
|
{
|
|
return (x*x + y*y + z*z);
|
|
}
|
|
|
|
inline cvm::real norm() const
|
|
{
|
|
return std::sqrt (this->norm2());
|
|
}
|
|
|
|
inline cvm::rvector unit() const
|
|
{
|
|
return cvm::rvector (x, y, z)/this->norm();
|
|
}
|
|
|
|
static inline size_t output_width (size_t const &real_width)
|
|
{
|
|
return 3*real_width + 10;
|
|
}
|
|
|
|
|
|
static inline cvm::rvector outer (cvm::rvector const &v1, cvm::rvector const &v2)
|
|
{
|
|
return cvm::rvector ( v1.y*v2.z - v2.y*v1.z,
|
|
-v1.x*v2.z + v2.x*v1.z,
|
|
v1.x*v2.y - v2.x*v1.y);
|
|
}
|
|
|
|
friend inline cvm::rvector operator - (cvm::rvector const &v)
|
|
{
|
|
return cvm::rvector (-v.x, -v.y, -v.z);
|
|
}
|
|
|
|
friend inline int operator == (cvm::rvector const &v1, cvm::rvector const &v2)
|
|
{
|
|
return (v1.x == v2.x) && (v1.y == v2.y) && (v1.z == v2.z);
|
|
}
|
|
|
|
friend inline int operator != (cvm::rvector const &v1, cvm::rvector const &v2)
|
|
{
|
|
return (v1.x != v2.x) || (v1.y != v2.y) || (v1.z != v2.z);
|
|
}
|
|
|
|
friend inline cvm::rvector operator + (cvm::rvector const &v1, cvm::rvector const &v2)
|
|
{
|
|
return cvm::rvector (v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
|
|
}
|
|
friend inline cvm::rvector operator - (cvm::rvector const &v1, cvm::rvector const &v2)
|
|
{
|
|
return cvm::rvector (v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
|
|
}
|
|
|
|
friend inline cvm::real operator * (cvm::rvector const &v1, cvm::rvector const &v2)
|
|
{
|
|
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
|
}
|
|
|
|
friend inline cvm::rvector operator * (cvm::real const &a, cvm::rvector const &v)
|
|
{
|
|
return cvm::rvector (a*v.x, a*v.y, a*v.z);
|
|
}
|
|
|
|
friend inline cvm::rvector operator * (cvm::rvector const &v, cvm::real const &a)
|
|
{
|
|
return cvm::rvector (a*v.x, a*v.y, a*v.z);
|
|
}
|
|
|
|
friend inline cvm::rvector operator / (cvm::rvector const &v, cvm::real const &a)
|
|
{
|
|
return cvm::rvector (v.x/a, v.y/a, v.z/a);
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
/// \brief Arbitrary size array (one dimensions) suitable for linear
|
|
/// algebra operations (i.e. for floating point numbers it can be used
|
|
/// with library functions)
|
|
template <class T, size_t const length> class colvarmodule::vector1d
|
|
{
|
|
protected:
|
|
|
|
/// Underlying C-array
|
|
T *array;
|
|
|
|
public:
|
|
|
|
/// Length of the array
|
|
inline size_t size()
|
|
{
|
|
return length;
|
|
}
|
|
|
|
/// Default constructor
|
|
inline vector1d (T const &t = T())
|
|
{
|
|
array = new T[length];
|
|
reset();
|
|
}
|
|
|
|
/// Set all elements to zero
|
|
inline void reset()
|
|
{
|
|
for (size_t i = 0; i < length; i++) {
|
|
array[i] = T (0.0);
|
|
}
|
|
}
|
|
|
|
/// Constructor from a 1-d C array
|
|
inline vector1d (T const *v)
|
|
{
|
|
array = new T[length];
|
|
for (size_t i = 0; i < length; i++) {
|
|
array[i] = v[i];
|
|
}
|
|
}
|
|
|
|
/// Copy constructor
|
|
inline vector1d (vector1d<T, length> const &v)
|
|
{
|
|
array = new T[length];
|
|
for (size_t i = 0; i < length; i++) {
|
|
array[i] = v.array[i];
|
|
}
|
|
}
|
|
|
|
/// Assignment
|
|
inline vector1d<T, length> & operator = (vector1d<T, length> const &v)
|
|
{
|
|
for (size_t i = 0; i < length; i++) {
|
|
this->array[i] = v.array[i];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Destructor
|
|
inline ~vector1d() {
|
|
delete [] array;
|
|
}
|
|
|
|
/// Return the 1-d C array
|
|
inline T *c_array() { return array; }
|
|
|
|
/// Return the 1-d C array
|
|
inline operator T *() { return array; }
|
|
|
|
/// Inner product
|
|
inline friend T operator * (vector1d<T, length> const &v1,
|
|
vector1d<T, length> const &v2)
|
|
{
|
|
T prod (0.0);
|
|
for (size_t i = 0; i < length; i++) {
|
|
prod += v1.array[i] * v2.array[i];
|
|
}
|
|
return prod;
|
|
}
|
|
|
|
/// Formatted output
|
|
friend std::ostream & operator << (std::ostream &os,
|
|
vector1d<T, length> const &v)
|
|
{
|
|
std::streamsize const w = os.width();
|
|
std::streamsize const p = os.precision();
|
|
|
|
os << "( ";
|
|
for (size_t i = 0; i < length-1; i++) {
|
|
os.width (w); os.precision (p);
|
|
os << v.array[i] << " , ";
|
|
}
|
|
os.width (w); os.precision (p);
|
|
os << v.array[length-1] << " )";
|
|
return os;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/// \brief Arbitrary size array (two dimensions) suitable for linear
|
|
/// algebra operations (i.e. for floating point numbers it can be used
|
|
/// with library functions)
|
|
template <class T,
|
|
size_t const outer_length,
|
|
size_t const inner_length> class colvarmodule::matrix2d
|
|
{
|
|
protected:
|
|
|
|
/// Underlying C array
|
|
T **array;
|
|
|
|
public:
|
|
|
|
/// Allocation routine, used by all constructors
|
|
inline void alloc() {
|
|
array = new T * [outer_length];
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
array[i] = new T [inner_length];
|
|
}
|
|
}
|
|
|
|
/// Set all elements to zero
|
|
inline void reset()
|
|
{
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
for (size_t j = 0; j < inner_length; j++) {
|
|
array[i][j] = T (0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Default constructor
|
|
inline matrix2d()
|
|
{
|
|
this->alloc();
|
|
reset();
|
|
}
|
|
|
|
/// Constructor from a 2-d C array
|
|
inline matrix2d (T const **m)
|
|
{
|
|
this->alloc();
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
for (size_t j = 0; j < inner_length; j++)
|
|
array[i][j] = m[i][j];
|
|
}
|
|
}
|
|
|
|
/// Copy constructor
|
|
inline matrix2d (matrix2d<T, outer_length, inner_length> const &m)
|
|
{
|
|
this->alloc();
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
for (size_t j = 0; j < inner_length; j++)
|
|
this->array[i][j] = m.array[i][j];
|
|
}
|
|
}
|
|
|
|
/// Assignment
|
|
inline matrix2d<T, outer_length, inner_length> &
|
|
operator = (matrix2d<T, outer_length, inner_length> const &m)
|
|
{
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
for (size_t j = 0; j < inner_length; j++)
|
|
this->array[i][j] = m.array[i][j];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Destructor
|
|
inline ~matrix2d() {
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
delete [] array[i];
|
|
}
|
|
delete [] array;
|
|
}
|
|
|
|
/// Return the 2-d C array
|
|
inline T **c_array() { return array; }
|
|
|
|
/// Return the 2-d C array
|
|
inline operator T **() { return array; }
|
|
|
|
// /// Matrix addi(c)tion
|
|
// inline friend matrix2d<T, outer_length, inner_length>
|
|
// operator + (matrix2d<T, outer_length, inner_length> const &mat1,
|
|
// matrix2d<T, outer_length, inner_length> const &mat2) {
|
|
// matrix2d<T, outer_length, inner_length> sum;
|
|
// for (size_t i = 0; i < outer_length; i++) {
|
|
// for (size_t j = 0; j < inner_length; j++) {
|
|
// sum[i][j] = mat1[i][j] + mat2[i][j];
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
// /// Matrix subtraction
|
|
// inline friend matrix2d<T, outer_length, inner_length>
|
|
// operator - (matrix2d<T, outer_length, inner_length> const &mat1,
|
|
// matrix2d<T, outer_length, inner_length> const &mat2) {
|
|
// matrix2d<T, outer_length, inner_length> sum;
|
|
// for (size_t i = 0; i < outer_length; i++) {
|
|
// for (size_t j = 0; j < inner_length; j++) {
|
|
// sum[i][j] = mat1[i][j] - mat2[i][j];
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
/// Formatted output
|
|
friend std::ostream & operator << (std::ostream &os,
|
|
matrix2d<T, outer_length, inner_length> const &m)
|
|
{
|
|
std::streamsize const w = os.width();
|
|
std::streamsize const p = os.precision();
|
|
|
|
os << "(";
|
|
for (size_t i = 0; i < outer_length; i++) {
|
|
os << " ( ";
|
|
for (size_t j = 0; j < inner_length-1; j++) {
|
|
os.width (w);
|
|
os.precision (p);
|
|
os << m.array[i][j] << " , ";
|
|
}
|
|
os.width (w);
|
|
os.precision (p);
|
|
os << m.array[i][inner_length-1] << " )";
|
|
}
|
|
|
|
os << " )";
|
|
return os;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/// \brief 2-dimensional array of real numbers with three components
|
|
/// along each dimension (works with colvarmodule::rvector)
|
|
class colvarmodule::rmatrix
|
|
: public colvarmodule::matrix2d<colvarmodule::real, 3, 3> {
|
|
private:
|
|
|
|
public:
|
|
|
|
/// Return the xx element
|
|
inline cvm::real & xx() { return array[0][0]; }
|
|
/// Return the xy element
|
|
inline cvm::real & xy() { return array[0][1]; }
|
|
/// Return the xz element
|
|
inline cvm::real & xz() { return array[0][2]; }
|
|
/// Return the yx element
|
|
inline cvm::real & yx() { return array[1][0]; }
|
|
/// Return the yy element
|
|
inline cvm::real & yy() { return array[1][1]; }
|
|
/// Return the yz element
|
|
inline cvm::real & yz() { return array[1][2]; }
|
|
/// Return the zx element
|
|
inline cvm::real & zx() { return array[2][0]; }
|
|
/// Return the zy element
|
|
inline cvm::real & zy() { return array[2][1]; }
|
|
/// Return the zz element
|
|
inline cvm::real & zz() { return array[2][2]; }
|
|
|
|
/// Return the xx element
|
|
inline cvm::real xx() const { return array[0][0]; }
|
|
/// Return the xy element
|
|
inline cvm::real xy() const { return array[0][1]; }
|
|
/// Return the xz element
|
|
inline cvm::real xz() const { return array[0][2]; }
|
|
/// Return the yx element
|
|
inline cvm::real yx() const { return array[1][0]; }
|
|
/// Return the yy element
|
|
inline cvm::real yy() const { return array[1][1]; }
|
|
/// Return the yz element
|
|
inline cvm::real yz() const { return array[1][2]; }
|
|
/// Return the zx element
|
|
inline cvm::real zx() const { return array[2][0]; }
|
|
/// Return the zy element
|
|
inline cvm::real zy() const { return array[2][1]; }
|
|
/// Return the zz element
|
|
inline cvm::real zz() const { return array[2][2]; }
|
|
|
|
/// Constructor from a 2-d C array
|
|
inline rmatrix (cvm::real const **m)
|
|
: cvm::matrix2d<cvm::real, 3, 3> (m)
|
|
{}
|
|
|
|
/// Default constructor
|
|
inline rmatrix()
|
|
: cvm::matrix2d<cvm::real, 3, 3>()
|
|
{}
|
|
|
|
/// Constructor component by component
|
|
inline rmatrix (cvm::real const &xxi,
|
|
cvm::real const &xyi,
|
|
cvm::real const &xzi,
|
|
cvm::real const &yxi,
|
|
cvm::real const &yyi,
|
|
cvm::real const &yzi,
|
|
cvm::real const &zxi,
|
|
cvm::real const &zyi,
|
|
cvm::real const &zzi)
|
|
: cvm::matrix2d<cvm::real, 3, 3>()
|
|
{
|
|
this->xx() = xxi;
|
|
this->xy() = xyi;
|
|
this->xz() = xzi;
|
|
this->yx() = yxi;
|
|
this->yy() = yyi;
|
|
this->yz() = yzi;
|
|
this->zx() = zxi;
|
|
this->zy() = zyi;
|
|
this->zz() = zzi;
|
|
}
|
|
|
|
/// Destructor
|
|
inline ~rmatrix()
|
|
{}
|
|
|
|
/// Return the determinant
|
|
inline cvm::real determinant() const
|
|
{
|
|
return
|
|
( xx() * (yy()*zz() - zy()*yz()))
|
|
- (yx() * (xy()*zz() - zy()*xz()))
|
|
+ (zx() * (xy()*yz() - yy()*xz()));
|
|
}
|
|
|
|
inline cvm::rmatrix transpose() const
|
|
{
|
|
return cvm::rmatrix (this->xx(),
|
|
this->yx(),
|
|
this->zx(),
|
|
this->xy(),
|
|
this->yy(),
|
|
this->zy(),
|
|
this->xz(),
|
|
this->yz(),
|
|
this->zz());
|
|
}
|
|
|
|
friend cvm::rvector operator * (cvm::rmatrix const &m, cvm::rvector const &r);
|
|
|
|
// friend inline cvm::rmatrix const operator * (cvm::rmatrix const &m1, cvm::rmatrix const &m2) {
|
|
// return cvm::rmatrix (m1.xx()*m2.xx() + m1.xy()*m2.yx() + m1.xz()*m2.yz(),
|
|
// m1.xx()*m2.xy() + m1.xy()*m2.yy() + m1.xz()*m2.zy(),
|
|
// m1.xx()*m2.xz() + m1.xy()*m2.yz() + m1.xz()*m2.zz(),
|
|
// m1.yx()*m2.xx() + m1.yy()*m2.yx() + m1.yz()*m2.yz(),
|
|
// m1.yx()*m2.xy() + m1.yy()*m2.yy() + m1.yz()*m2.yy(),
|
|
// m1.yx()*m2.xz() + m1.yy()*m2.yz() + m1.yz()*m2.yz(),
|
|
// m1.zx()*m2.xx() + m1.zy()*m2.yx() + m1.zz()*m2.yz(),
|
|
// m1.zx()*m2.xy() + m1.zy()*m2.yy() + m1.zz()*m2.yy(),
|
|
// m1.zx()*m2.xz() + m1.zy()*m2.yz() + m1.zz()*m2.yz());
|
|
// }
|
|
|
|
};
|
|
|
|
|
|
inline cvm::rvector operator * (cvm::rmatrix const &m,
|
|
cvm::rvector const &r)
|
|
{
|
|
return cvm::rvector (m.xx()*r.x + m.xy()*r.y + m.xz()*r.z,
|
|
m.yx()*r.x + m.yy()*r.y + m.yz()*r.z,
|
|
m.zx()*r.x + m.zy()*r.y + m.zz()*r.z);
|
|
}
|
|
|
|
|
|
/// Numerical recipes diagonalization
|
|
void jacobi (cvm::real **a, int n, cvm::real d[], cvm::real **v, int *nrot);
|
|
|
|
/// Eigenvector sort
|
|
void eigsrt (cvm::real d[], cvm::real **v, int n);
|
|
|
|
/// Transpose the matrix
|
|
void transpose (cvm::real **v, int n);
|
|
|
|
|
|
|
|
|
|
/// \brief 1-dimensional vector of real numbers with four components and
|
|
/// a quaternion algebra
|
|
class colvarmodule::quaternion {
|
|
|
|
public:
|
|
|
|
cvm::real q0, q1, q2, q3;
|
|
|
|
/// Constructor from a 3-d vector
|
|
inline quaternion (cvm::real const &x, cvm::real const &y, cvm::real const &z)
|
|
: q0 (0.0), q1 (x), q2 (y), q3 (z)
|
|
{}
|
|
|
|
/// Constructor component by component
|
|
inline quaternion (cvm::real const qv[4])
|
|
: q0 (qv[0]), q1 (qv[1]), q2 (qv[2]), q3 (qv[3])
|
|
{}
|
|
|
|
/// Constructor component by component
|
|
inline quaternion (cvm::real const &q0i,
|
|
cvm::real const &q1i,
|
|
cvm::real const &q2i,
|
|
cvm::real const &q3i)
|
|
: q0 (q0i), q1 (q1i), q2 (q2i), q3 (q3i)
|
|
{}
|
|
|
|
/// "Constructor" after Euler angles (in radians)
|
|
///
|
|
/// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
|
|
inline void set_from_euler_angles (cvm::real const &phi_in,
|
|
cvm::real const &theta_in,
|
|
cvm::real const &psi_in)
|
|
{
|
|
q0 = ( (std::cos (phi_in/2.0)) * (std::cos (theta_in/2.0)) * (std::cos (psi_in/2.0)) +
|
|
(std::sin (phi_in/2.0)) * (std::sin (theta_in/2.0)) * (std::sin (psi_in/2.0)) );
|
|
|
|
q1 = ( (std::sin (phi_in/2.0)) * (std::cos (theta_in/2.0)) * (std::cos (psi_in/2.0)) -
|
|
(std::cos (phi_in/2.0)) * (std::sin (theta_in/2.0)) * (std::sin (psi_in/2.0)) );
|
|
|
|
q2 = ( (std::cos (phi_in/2.0)) * (std::sin (theta_in/2.0)) * (std::cos (psi_in/2.0)) +
|
|
(std::sin (phi_in/2.0)) * (std::cos (theta_in/2.0)) * (std::sin (psi_in/2.0)) );
|
|
|
|
q3 = ( (std::cos (phi_in/2.0)) * (std::cos (theta_in/2.0)) * (std::sin (psi_in/2.0)) -
|
|
(std::sin (phi_in/2.0)) * (std::sin (theta_in/2.0)) * (std::cos (psi_in/2.0)) );
|
|
}
|
|
|
|
/// \brief Default constructor
|
|
inline quaternion()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
/// \brief Set all components to a scalar
|
|
inline void set (cvm::real const value = 0.0)
|
|
{
|
|
q0 = q1 = q2 = q3 = value;
|
|
}
|
|
|
|
/// \brief Set all components to zero (null quaternion)
|
|
inline void reset()
|
|
{
|
|
q0 = q1 = q2 = q3 = 0.0;
|
|
}
|
|
|
|
/// \brief Set the q0 component to 1 and the others to 0 (quaternion
|
|
/// representing no rotation)
|
|
inline void reset_rotation()
|
|
{
|
|
q0 = 1.0;
|
|
q1 = q2 = q3 = 0.0;
|
|
}
|
|
|
|
/// Tell the number of characters required to print a quaternion, given that of a real number
|
|
static inline size_t output_width (size_t const &real_width)
|
|
{
|
|
return 4*real_width + 13;
|
|
}
|
|
|
|
/// \brief Formatted output operator
|
|
friend std::ostream & operator << (std::ostream &os, cvm::quaternion const &q);
|
|
/// \brief Formatted input operator
|
|
friend std::istream & operator >> (std::istream &is, cvm::quaternion &q);
|
|
|
|
/// Access the quaternion as a 4-d array (return a reference)
|
|
inline cvm::real & operator [] (int const &i) {
|
|
switch (i) {
|
|
case 0:
|
|
return this->q0;
|
|
case 1:
|
|
return this->q1;
|
|
case 2:
|
|
return this->q2;
|
|
case 3:
|
|
return this->q3;
|
|
default:
|
|
cvm::fatal_error ("Error: incorrect quaternion component.\n");
|
|
return q0;
|
|
}
|
|
}
|
|
|
|
/// Access the quaternion as a 4-d array (return a value)
|
|
inline cvm::real operator [] (int const &i) const {
|
|
switch (i) {
|
|
case 0:
|
|
return this->q0;
|
|
case 1:
|
|
return this->q1;
|
|
case 2:
|
|
return this->q2;
|
|
case 3:
|
|
return this->q3;
|
|
default:
|
|
cvm::fatal_error ("Error: trying to access a quaternion "
|
|
"component which is not between 0 and 3.\n");
|
|
return this->q0;
|
|
}
|
|
}
|
|
|
|
/// Square norm of the quaternion
|
|
inline cvm::real norm2() const
|
|
{
|
|
return q0*q0 + q1*q1 + q2*q2 + q3*q3;
|
|
}
|
|
|
|
/// Norm of the quaternion
|
|
inline cvm::real norm() const
|
|
{
|
|
return std::sqrt (this->norm2());
|
|
}
|
|
|
|
/// Return the conjugate quaternion
|
|
inline cvm::quaternion conjugate() const
|
|
{
|
|
return cvm::quaternion (q0, -q1, -q2, -q3);
|
|
}
|
|
|
|
inline void operator *= (cvm::real const &a)
|
|
{
|
|
q0 *= a; q1 *= a; q2 *= a; q3 *= a;
|
|
}
|
|
|
|
inline void operator /= (cvm::real const &a)
|
|
{
|
|
q0 /= a; q1 /= a; q2 /= a; q3 /= a;
|
|
}
|
|
|
|
inline void set_positive()
|
|
{
|
|
if (q0 > 0.0) return;
|
|
q0 = -q0;
|
|
q1 = -q1;
|
|
q2 = -q2;
|
|
q3 = -q3;
|
|
}
|
|
|
|
inline void operator += (cvm::quaternion const &h)
|
|
{
|
|
q0+=h.q0; q1+=h.q1; q2+=h.q2; q3+=h.q3;
|
|
}
|
|
inline void operator -= (cvm::quaternion const &h)
|
|
{
|
|
q0-=h.q0; q1-=h.q1; q2-=h.q2; q3-=h.q3;
|
|
}
|
|
|
|
/// Promote a 3-vector to a quaternion
|
|
static inline cvm::quaternion promote (cvm::rvector const &v)
|
|
{
|
|
return cvm::quaternion (0.0, v.x, v.y, v.z);
|
|
}
|
|
/// Return the vector component
|
|
inline cvm::rvector get_vector() const
|
|
{
|
|
return cvm::rvector (q1, q2, q3);
|
|
}
|
|
|
|
|
|
friend inline cvm::quaternion operator + (cvm::quaternion const &h, cvm::quaternion const &q)
|
|
{
|
|
return cvm::quaternion (h.q0+q.q0, h.q1+q.q1, h.q2+q.q2, h.q3+q.q3);
|
|
}
|
|
|
|
friend inline cvm::quaternion operator - (cvm::quaternion const &h, cvm::quaternion const &q)
|
|
{
|
|
return cvm::quaternion (h.q0-q.q0, h.q1-q.q1, h.q2-q.q2, h.q3-q.q3);
|
|
}
|
|
|
|
/// \brief Provides the quaternion product. \b NOTE: for the inner
|
|
/// product use: \code h.inner (q); \endcode
|
|
friend inline cvm::quaternion operator * (cvm::quaternion const &h, cvm::quaternion const &q)
|
|
{
|
|
return cvm::quaternion (h.q0*q.q0 - h.q1*q.q1 - h.q2*q.q2 - h.q3*q.q3,
|
|
h.q0*q.q1 + h.q1*q.q0 + h.q2*q.q3 - h.q3*q.q2,
|
|
h.q0*q.q2 + h.q2*q.q0 + h.q3*q.q1 - h.q1*q.q3,
|
|
h.q0*q.q3 + h.q3*q.q0 + h.q1*q.q2 - h.q2*q.q1);
|
|
}
|
|
|
|
friend inline cvm::quaternion operator * (cvm::real const &c,
|
|
cvm::quaternion const &q)
|
|
{
|
|
return cvm::quaternion (c*q.q0, c*q.q1, c*q.q2, c*q.q3);
|
|
}
|
|
friend inline cvm::quaternion operator * (cvm::quaternion const &q,
|
|
cvm::real const &c)
|
|
{
|
|
return cvm::quaternion (q.q0*c, q.q1*c, q.q2*c, q.q3*c);
|
|
}
|
|
friend inline cvm::quaternion operator / (cvm::quaternion const &q,
|
|
cvm::real const &c)
|
|
{
|
|
return cvm::quaternion (q.q0/c, q.q1/c, q.q2/c, q.q3/c);
|
|
}
|
|
|
|
|
|
/// \brief Rotate v through this quaternion (put it in the rotated
|
|
/// reference frame)
|
|
inline cvm::rvector rotate (cvm::rvector const &v) const
|
|
{
|
|
return ((*this) * promote (v) * ((*this).conjugate())).get_vector();
|
|
}
|
|
|
|
/// \brief Rotate Q2 through this quaternion (put it in the rotated
|
|
/// reference frame)
|
|
inline cvm::quaternion rotate (cvm::quaternion const &Q2) const
|
|
{
|
|
cvm::rvector const vq_rot = this->rotate (Q2.get_vector());
|
|
return cvm::quaternion (Q2.q0, vq_rot.x, vq_rot.y, vq_rot.z);
|
|
}
|
|
|
|
/// Return the 3x3 matrix associated to this quaternion
|
|
inline cvm::rmatrix rotation_matrix() const
|
|
{
|
|
cvm::rmatrix R;
|
|
|
|
R.xx() = q0*q0 + q1*q1 - q2*q2 - q3*q3;
|
|
R.yy() = q0*q0 - q1*q1 + q2*q2 - q3*q3;
|
|
R.zz() = q0*q0 - q1*q1 - q2*q2 + q3*q3;
|
|
|
|
R.xy() = 2.0 * (q1*q2 - q0*q3);
|
|
R.xz() = 2.0 * (q0*q2 + q1*q3);
|
|
|
|
R.yx() = 2.0 * (q0*q3 + q1*q2);
|
|
R.yz() = 2.0 * (q2*q3 - q0*q1);
|
|
|
|
R.zx() = 2.0 * (q1*q3 - q0*q2);
|
|
R.zy() = 2.0 * (q0*q1 + q2*q3);
|
|
|
|
return R;
|
|
}
|
|
|
|
|
|
/// \brief Multiply the given vector by the derivative of the given
|
|
/// (rotated) position with respect to the quaternion
|
|
cvm::quaternion position_derivative_inner (cvm::rvector const &pos,
|
|
cvm::rvector const &vec) const;
|
|
|
|
|
|
/// \brief Return the cosine between the orientation frame
|
|
/// associated to this quaternion and another
|
|
inline cvm::real cosine (cvm::quaternion const &q) const
|
|
{
|
|
if (q0*q0 >= (1.0-1.0E-10)) {
|
|
// null quaternion, return the square of the cosine of the other
|
|
// quaternion's rotation angle
|
|
return (2.0*q.q0*q.q0 - 1.0);
|
|
} else if (q.q0*q.q0 >= (1.0-1.0E-10)) {
|
|
return (2.0*q0*q0 - 1.0);
|
|
} else {
|
|
// get a vector orthogonal to both axes of rotation
|
|
cvm::rvector const op = (cvm::rvector::outer (this->get_vector(), q.get_vector()));
|
|
cvm::real const opl2 = op.norm2();
|
|
// rotate it with both quaternions and get the normalized inner product
|
|
return ( (opl2 > 0.0) ?
|
|
((this->rotate (op)) * (q.rotate (op))) / opl2 :
|
|
1.0 );
|
|
}
|
|
}
|
|
|
|
/// \brief Square distance from another quaternion on the
|
|
/// 4-dimensional unit sphere: returns the square of the angle along
|
|
/// the shorter of the two geodesics
|
|
inline cvm::real dist2 (cvm::quaternion const &Q2) const
|
|
{
|
|
cvm::real const cos_omega = this->q0*Q2.q0 + this->q1*Q2.q1 +
|
|
this->q2*Q2.q2 + this->q3*Q2.q3;
|
|
|
|
cvm::real const omega = std::acos ( (cos_omega > 1.0) ? 1.0 :
|
|
( (cos_omega < -1.0) ? -1.0 : cos_omega) );
|
|
|
|
// get the minimum distance: x and -x are the same quaternion
|
|
if (cos_omega > 0.0)
|
|
return omega * omega;
|
|
else
|
|
return (PI-omega) * (PI-omega);
|
|
}
|
|
|
|
/// Gradient of the square distance: returns a 4-vector equivalent
|
|
/// to the one provided by slerp
|
|
inline cvm::quaternion dist2_grad (cvm::quaternion const &Q2) const
|
|
{
|
|
cvm::real const cos_omega = this->q0*Q2.q0 + this->q1*Q2.q1 + this->q2*Q2.q2 + this->q3*Q2.q3;
|
|
cvm::real const omega = std::acos ( (cos_omega > 1.0) ? 1.0 :
|
|
( (cos_omega < -1.0) ? -1.0 : cos_omega) );
|
|
cvm::real const sin_omega = std::sin (omega);
|
|
|
|
if (std::fabs (sin_omega) < 1.0E-14) {
|
|
// return a null 4d vector
|
|
return cvm::quaternion (0.0, 0.0, 0.0, 0.0);
|
|
}
|
|
|
|
cvm::quaternion const
|
|
grad1 ((-1.0)*sin_omega*Q2.q0 + cos_omega*(this->q0-cos_omega*Q2.q0)/sin_omega,
|
|
(-1.0)*sin_omega*Q2.q1 + cos_omega*(this->q1-cos_omega*Q2.q1)/sin_omega,
|
|
(-1.0)*sin_omega*Q2.q2 + cos_omega*(this->q2-cos_omega*Q2.q2)/sin_omega,
|
|
(-1.0)*sin_omega*Q2.q3 + cos_omega*(this->q3-cos_omega*Q2.q3)/sin_omega);
|
|
|
|
if (cos_omega > 0.0) {
|
|
return 2.0*omega*grad1;
|
|
}
|
|
else {
|
|
return -2.0*(PI-omega)*grad1;
|
|
}
|
|
}
|
|
|
|
/// \brief Choose the closest between Q2 and -Q2 and save it back.
|
|
/// Not required for dist2() and dist2_grad()
|
|
inline void match (cvm::quaternion &Q2) const
|
|
{
|
|
cvm::real const cos_omega = this->q0*Q2.q0 + this->q1*Q2.q1 +
|
|
this->q2*Q2.q2 + this->q3*Q2.q3;
|
|
if (cos_omega < 0.0) Q2 *= -1.0;
|
|
}
|
|
|
|
/// \brief Inner product (as a 4-d vector) with Q2; requires match()
|
|
/// if the largest overlap is looked for
|
|
inline cvm::real inner (cvm::quaternion const &Q2) const
|
|
{
|
|
cvm::real const prod = this->q0*Q2.q0 + this->q1*Q2.q1 +
|
|
this->q2*Q2.q2 + this->q3*Q2.q3;
|
|
return prod;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
/// \brief A rotation between two sets of coordinates (for the moment
|
|
/// a wrapper for colvarmodule::quaternion)
|
|
class colvarmodule::rotation
|
|
{
|
|
public:
|
|
|
|
/// \brief The rotation itself (implemented as a quaternion)
|
|
cvm::quaternion q;
|
|
|
|
/// \brief Eigenvalue corresponding to the optimal rotation
|
|
cvm::real lambda;
|
|
|
|
/// \brief Perform gradient tests
|
|
bool b_debug_gradients;
|
|
|
|
/// \brief Positions to superimpose: the rotation should brings pos1
|
|
/// into pos2
|
|
std::vector< cvm::atom_pos > pos1, pos2;
|
|
|
|
/// Derivatives of S
|
|
std::vector< cvm::matrix2d<cvm::rvector, 4, 4> > dS_1, dS_2;
|
|
/// Derivatives of leading eigenvalue
|
|
std::vector< cvm::rvector > dL0_1, dL0_2;
|
|
/// Derivatives of leading eigenvector
|
|
std::vector< cvm::vector1d<cvm::rvector, 4> > dQ0_1, dQ0_2;
|
|
|
|
/// Allocate space for the derivatives of the rotation
|
|
inline void request_group1_gradients (size_t const &n)
|
|
{
|
|
dS_1.resize (n, cvm::matrix2d<cvm::rvector, 4, 4>());
|
|
dL0_1.resize (n, cvm::rvector (0.0, 0.0, 0.0));
|
|
dQ0_1.resize (n, cvm::vector1d<cvm::rvector, 4>());
|
|
}
|
|
|
|
inline void request_group2_gradients (size_t const &n)
|
|
{
|
|
dS_2.resize (n, cvm::matrix2d<cvm::rvector, 4, 4>());
|
|
dL0_2.resize (n, cvm::rvector (0.0, 0.0, 0.0));
|
|
dQ0_2.resize (n, cvm::vector1d<cvm::rvector, 4>());
|
|
}
|
|
|
|
/// \brief Calculate the optimal rotation and store the
|
|
/// corresponding eigenvalue and eigenvector in the arguments l0 and
|
|
/// q0; if the gradients have been previously requested, calculate
|
|
/// them as well
|
|
///
|
|
/// The method to derive the optimal rotation is defined in:
|
|
/// Coutsias EA, Seok C, Dill KA.
|
|
/// Using quaternions to calculate RMSD.
|
|
/// J Comput Chem. 25(15):1849-57 (2004)
|
|
/// DOI: 10.1002/jcc.20110 PubMed: 15376254
|
|
void calc_optimal_rotation (std::vector<atom_pos> const &pos1,
|
|
std::vector<atom_pos> const &pos2);
|
|
|
|
/// Default constructor
|
|
inline rotation()
|
|
: b_debug_gradients (false)
|
|
{}
|
|
|
|
/// Constructor after a quaternion
|
|
inline rotation (cvm::quaternion const &qi)
|
|
: b_debug_gradients (false)
|
|
{
|
|
q = qi;
|
|
}
|
|
|
|
/// Constructor after an axis of rotation and an angle (in radians)
|
|
inline rotation (cvm::real const &angle, cvm::rvector const &axis)
|
|
: b_debug_gradients (false)
|
|
{
|
|
cvm::rvector const axis_n = axis.unit();
|
|
cvm::real const sina = std::sin (angle/2.0);
|
|
q = cvm::quaternion (std::cos (angle/2.0),
|
|
sina * axis_n.x, sina * axis_n.y, sina * axis_n.z);
|
|
}
|
|
|
|
/// Destructor
|
|
inline ~rotation()
|
|
{}
|
|
|
|
/// Return the rotated vector
|
|
inline cvm::rvector rotate (cvm::rvector const &v) const
|
|
{
|
|
return q.rotate (v);
|
|
}
|
|
|
|
/// Return the inverse of this rotation
|
|
inline cvm::rotation inverse() const
|
|
{
|
|
return cvm::rotation (this->q.conjugate());
|
|
}
|
|
|
|
/// Return the associated 3x3 matrix
|
|
inline cvm::rmatrix matrix() const
|
|
{
|
|
return q.rotation_matrix();
|
|
}
|
|
|
|
|
|
/// \brief Return the spin angle (in degrees) with respect to the
|
|
/// provided axis (which MUST be normalized)
|
|
inline cvm::real spin_angle (cvm::rvector const &axis) const
|
|
{
|
|
cvm::rvector const q_vec = q.get_vector();
|
|
cvm::real alpha = (180.0/PI) * 2.0 * std::atan2 (axis * q_vec, q.q0);
|
|
while (alpha > 180.0) alpha -= 360;
|
|
while (alpha < -180.0) alpha += 360;
|
|
return alpha;
|
|
}
|
|
|
|
/// \brief Return the derivative of the spin angle with respect to
|
|
/// the quaternion
|
|
inline cvm::quaternion dspin_angle_dq (cvm::rvector const &axis) const
|
|
{
|
|
cvm::rvector const q_vec = q.get_vector();
|
|
cvm::real const iprod = axis * q_vec;
|
|
|
|
if (q.q0 != 0.0) {
|
|
|
|
// cvm::real const x = iprod/q.q0;
|
|
|
|
cvm::real const dspindx = (180.0/PI) * 2.0 * (1.0 / (1.0 + (iprod*iprod)/(q.q0*q.q0)));
|
|
|
|
return
|
|
cvm::quaternion ( dspindx * (iprod * (-1.0) / (q.q0*q.q0)),
|
|
dspindx * ((1.0/q.q0) * axis.x),
|
|
dspindx * ((1.0/q.q0) * axis.y),
|
|
dspindx * ((1.0/q.q0) * axis.z));
|
|
} else {
|
|
// (1/(1+x^2)) ~ (1/x)^2
|
|
return
|
|
cvm::quaternion ((180.0/PI) * 2.0 * ((-1.0)/iprod), 0.0, 0.0, 0.0);
|
|
// XX TODO: What if iprod == 0? XX
|
|
}
|
|
}
|
|
|
|
/// \brief Return the projection of the orientation vector onto a
|
|
/// predefined axis
|
|
inline cvm::real cos_theta (cvm::rvector const &axis) const
|
|
{
|
|
cvm::rvector const q_vec = q.get_vector();
|
|
cvm::real const alpha =
|
|
(180.0/PI) * 2.0 * std::atan2 (axis * q_vec, q.q0);
|
|
|
|
cvm::real const cos_spin_2 = std::cos (alpha * (PI/180.0) * 0.5);
|
|
cvm::real const cos_theta_2 = ( (cos_spin_2 != 0.0) ?
|
|
(q.q0 / cos_spin_2) :
|
|
(0.0) );
|
|
// cos(2t) = 2*cos(t)^2 - 1
|
|
return 2.0 * (cos_theta_2*cos_theta_2) - 1.0;
|
|
}
|
|
|
|
/// Return the derivative of the tilt wrt the quaternion
|
|
inline cvm::quaternion dcos_theta_dq (cvm::rvector const &axis) const
|
|
{
|
|
cvm::rvector const q_vec = q.get_vector();
|
|
cvm::real const iprod = axis * q_vec;
|
|
|
|
cvm::real const cos_spin_2 = std::cos (std::atan2 (iprod, q.q0));
|
|
|
|
if (q.q0 != 0.0) {
|
|
|
|
cvm::real const d_cos_theta_dq0 =
|
|
(4.0 * q.q0 / (cos_spin_2*cos_spin_2)) *
|
|
(1.0 - (iprod*iprod)/(q.q0*q.q0) / (1.0 + (iprod*iprod)/(q.q0*q.q0)));
|
|
|
|
cvm::real const d_cos_theta_dqn =
|
|
(4.0 * q.q0 / (cos_spin_2*cos_spin_2) *
|
|
(iprod/q.q0) / (1.0 + (iprod*iprod)/(q.q0*q.q0)));
|
|
|
|
return cvm::quaternion (d_cos_theta_dq0,
|
|
d_cos_theta_dqn * axis.x,
|
|
d_cos_theta_dqn * axis.y,
|
|
d_cos_theta_dqn * axis.z);
|
|
} else {
|
|
|
|
cvm::real const d_cos_theta_dqn =
|
|
(4.0 / (cos_spin_2*cos_spin_2 * iprod));
|
|
|
|
return cvm::quaternion (0.0,
|
|
d_cos_theta_dqn * axis.x,
|
|
d_cos_theta_dqn * axis.y,
|
|
d_cos_theta_dqn * axis.z);
|
|
}
|
|
}
|
|
|
|
/// \brief Threshold for the eigenvalue crossing test
|
|
static cvm::real crossing_threshold;
|
|
|
|
protected:
|
|
|
|
/// \brief Previous value of the rotation (used to warn the user
|
|
/// when the structure changes too much, and there may be an
|
|
/// eigenvalue crossing)
|
|
cvm::quaternion q_old;
|
|
|
|
/// Build the overlap matrix S (used by calc_optimal_rotation())
|
|
void build_matrix (std::vector<cvm::atom_pos> const &pos1,
|
|
std::vector<cvm::atom_pos> const &pos2,
|
|
cvm::matrix2d<real, 4, 4> &S);
|
|
|
|
/// Diagonalize the overlap matrix S (used by calc_optimal_rotation())
|
|
void diagonalize_matrix (cvm::matrix2d<cvm::real, 4, 4> &S,
|
|
cvm::real S_eigval[4],
|
|
cvm::matrix2d<cvm::real, 4, 4> &S_eigvec);
|
|
};
|
|
|
|
|
|
#endif
|
|
|
|
// Emacs
|
|
// Local Variables:
|
|
// mode: C++
|
|
// End:
|