lammps/lib/gpu/lal_coul_long.cu

307 lines
13 KiB
Plaintext

// **************************************************************************
// coul_long.cu
// -------------------
// Axel Kohlmeyer (Temple)
//
// Device code for acceleration of the coul/long pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin : July 2011
// email : a.kohlmeyer@temple.edu
// ***************************************************************************/
#ifdef NV_KERNEL
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
texture<float4> pos_tex;
texture<float> q_tex;
#else
texture<int4,1> pos_tex;
texture<int2> q_tex;
#endif
#else
#define pos_tex x_
#define q_tex q_
#endif
#if (ARCH < 300)
#define store_answers_lq(f, e_coul, virial, ii, inum, tid, \
t_per_atom, offset, eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
__local acctyp red_acc[6][BLOCK_PAIR]; \
\
red_acc[0][tid]=f.x; \
red_acc[1][tid]=f.y; \
red_acc[2][tid]=f.z; \
red_acc[3][tid]=e_coul; \
\
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<4; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
\
f.x=red_acc[0][tid]; \
f.y=red_acc[1][tid]; \
f.z=red_acc[2][tid]; \
e_coul=red_acc[3][tid]; \
\
if (vflag>0) { \
for (int r=0; r<6; r++) \
red_acc[r][tid]=virial[r]; \
\
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<6; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
\
for (int r=0; r<6; r++) \
virial[r]=red_acc[r][tid]; \
} \
} \
\
if (offset==0) { \
__global acctyp *ap1=engv+ii; \
if (eflag>0) { \
*ap1=(acctyp)0; \
ap1+=inum; \
*ap1=e_coul*(acctyp)0.5; \
ap1+=inum; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
*ap1=virial[i]*(acctyp)0.5; \
ap1+=inum; \
} \
} \
ans[ii]=f; \
}
#else
#define store_answers_lq(f, e_coul, virial, ii, inum, tid, \
t_per_atom, offset, eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
f.x += shfl_xor(f.x, s, t_per_atom); \
f.y += shfl_xor(f.y, s, t_per_atom); \
f.z += shfl_xor(f.z, s, t_per_atom); \
e_coul += shfl_xor(e_coul, s, t_per_atom); \
} \
if (vflag>0) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
for (int r=0; r<6; r++) \
virial[r] += shfl_xor(virial[r], s, t_per_atom); \
} \
} \
} \
if (offset==0) { \
__global acctyp *ap1=engv+ii; \
if (eflag>0) { \
*ap1=(acctyp)0; \
ap1+=inum; \
*ap1=e_coul*(acctyp)0.5; \
ap1+=inum; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
*ap1=virial[i]*(acctyp)0.5; \
ap1+=inum; \
} \
} \
ans[ii]=f; \
}
#endif
__kernel void k_coul_long(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1,
const __global numtyp4 *restrict lj3,
const int lj_types,
const __global numtyp *restrict sp_cl_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch,
const __global numtyp *restrict q_,
const numtyp cut_coulsq, const numtyp qqrd2e,
const numtyp g_ewald, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp sp_cl[4];
sp_cl[0]=sp_cl_in[0];
sp_cl[1]=sp_cl_in[1];
sp_cl[2]=sp_cl_in[2];
sp_cl[3]=sp_cl_in[3];
acctyp e_coul=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
const __global int *nbor, *list_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,list_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp qtmp; fetch(qtmp,i,q_tex);
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
numtyp factor_coul;
factor_coul = (numtyp)1.0-sp_cl[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq < cut_coulsq) {
numtyp r2inv=ucl_recip(rsq);
numtyp force, prefactor, _erfc;
numtyp r = ucl_rsqrt(r2inv);
numtyp grij = g_ewald * r;
numtyp expm2 = ucl_exp(-grij*grij);
numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij);
_erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
fetch(prefactor,j,q_tex);
prefactor *= qqrd2e * qtmp/r;
force = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul) * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
e_coul += prefactor*(_erfc-factor_coul);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers_lq(f,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,
vflag,ans,engv);
} // if ii
}
__kernel void k_coul_long_fast(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1_in,
const __global numtyp4 *restrict lj3_in,
const __global numtyp *restrict sp_cl_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch,
const __global numtyp *restrict q_,
const numtyp cut_coulsq, const numtyp qqrd2e,
const numtyp g_ewald, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp sp_cl[4];
if (tid<4)
sp_cl[tid]=sp_cl_in[tid];
acctyp e_coul=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__syncthreads();
if (ii<inum) {
const __global int *nbor, *list_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,list_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp qtmp; fetch(qtmp,i,q_tex);
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
numtyp factor_coul;
factor_coul = (numtyp)1.0-sp_cl[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq < cut_coulsq) {
numtyp r2inv=ucl_recip(rsq);
numtyp force, prefactor, _erfc;
numtyp r = ucl_rsqrt(r2inv);
numtyp grij = g_ewald * r;
numtyp expm2 = ucl_exp(-grij*grij);
numtyp t = ucl_recip((numtyp)1.0 + EWALD_P*grij);
_erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
fetch(prefactor,j,q_tex);
prefactor *= qqrd2e * qtmp/r;
force = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul) * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
e_coul += prefactor*(_erfc-factor_coul);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers_lq(f,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,
vflag,ans,engv);
} // if ii
}