lammps/lib/poems/poemstree.h

599 lines
15 KiB
C++

/*
*_________________________________________________________________________*
* POEMS: PARALLELIZABLE OPEN SOURCE EFFICIENT MULTIBODY SOFTWARE *
* DESCRIPTION: SEE READ-ME *
* FILE NAME: poemstree.h *
* AUTHORS: See Author List *
* GRANTS: See Grants List *
* COPYRIGHT: (C) 2005 by Authors as listed in Author's List *
* LICENSE: Please see License Agreement *
* DOWNLOAD: Free at www.rpi.edu/~anderk5 *
* ADMINISTRATOR: Prof. Kurt Anderson *
* Computational Dynamics Lab *
* Rensselaer Polytechnic Institute *
* 110 8th St. Troy NY 12180 *
* CONTACT: anderk5@rpi.edu *
*_________________________________________________________________________*/
#ifndef TREE_H
#define TREE_H
#include "poemstreenode.h"
#include "poemsnodelib.h"
// constants to indicate the balance factor of a node
const int leftheavy = -1;
const int balanced = 0;
const int rightheavy = 1;
class Tree{
protected:
// pointer to tree root and node most recently accessed
TreeNode *root;
TreeNode *current;
// number of elements in the tree
int size;
// used by the copy constructor and assignment operator
TreeNode *CopyTree(TreeNode *t);
// used by insert and delete method to re-establish
// the avl conditions after a node is added or deleted
// from a subtree
void SingleRotateLeft (TreeNode* &p);
void SingleRotateRight (TreeNode* &p);
void DoubleRotateLeft (TreeNode* &p);
void DoubleRotateRight (TreeNode* &p);
void UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor);
void UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor);
// used by destructor, assignment operator and ClearList
void DeleteTree(TreeNode *t);
void ClearTree(TreeNode * &t);
// locate a node with data item and its parent in tree
// used by Find and Delete
TreeNode *FindNode(const int& item, TreeNode* & parent) const;
public:
// constructor, destructor
Tree(void);
~Tree(void)
{
ClearTree(root);
};
// assignment operator
Tree& operator= (const Tree& rhs);
// standard list handling methods
void * Find(int& item);
void * GetAuxData(int item) { return (void *)(FindNode(item, root)->GetAuxData());}
void Insert(const int& item, const int& data, void * AuxData = NULL);
void Delete(const int& item);
void AVLInsert(TreeNode* &tree, TreeNode* newNode, int &reviseBalanceFactor);
void ClearList(void);
// tree specific methods
void Update(const int& item);
TreeNode *GetRoot(void) const;
};
// constructor
Tree::Tree(void)
{
root = 0;
current = 0;
size = 0;
}
// return root pointer
TreeNode *Tree::GetRoot(void) const
{
return root;
}
// assignment operator
Tree& Tree::operator = (const Tree& rhs)
{
// can't copy a tree to itself
if (this == &rhs)
return *this;
// clear current tree. copy new tree into current object
ClearList();
root = CopyTree(rhs.root);
// assign current to root and set the tree size
current = root;
size = rhs.size;
// return reference to current object
return *this;
}
// search for data item in the tree. if found, return its node
// address and a pointer to its parent; otherwise, return NULL
TreeNode *Tree::FindNode(const int& item,
TreeNode* & parent) const
{
// cycle t through the tree starting with root
TreeNode *t = root;
// the parent of the root is NULL
parent = NULL;
// terminate on empty subtree
while(t != NULL)
{
// stop on a match
if (item == t->data)
break;
else
{
// update the parent pointer and move right of left
parent = t;
if (item < t->data)
t = t->left;
else
t = t->right;
}
}
// return pointer to node; NULL if not found
return t;
}
// search for item. if found, assign the node data to item
void * Tree::Find(int& item)
{
// we use FindNode, which requires a parent parameter
TreeNode *parent;
// search tree for item. assign matching node to current
current = FindNode (item, parent);
// if item found, assign data to item and return True
if (current != NULL)
{
item = current->data;
return current->GetAuxData();
}
else
// item not found in the tree. return False
return NULL;
}
void Tree::Insert(const int& item, const int& data, void * AuxData)
{
// declare AVL tree node pointer; using base class method
// GetRoot. cast to larger node and assign root pointer
TreeNode *treeRoot, *newNode;
treeRoot = GetRoot();
// flag used by AVLInsert to rebalance nodes
int reviseBalanceFactor = 0;
// get a new AVL tree node with empty pointer fields
newNode = GetTreeNode(item,NULL,NULL);
newNode->data = data;
newNode->SetAuxData(AuxData);
// call recursive routine to actually insert the element
AVLInsert(treeRoot, newNode, reviseBalanceFactor);
// assign new values to data members in the base class
root = treeRoot;
current = newNode;
size++;
}
void Tree::AVLInsert(TreeNode *&tree, TreeNode *newNode, int &reviseBalanceFactor)
{
// flag indicates change node's balanceFactor will occur
int rebalanceCurrNode;
// scan reaches an empty tree; time to insert the new node
if (tree == NULL)
{
// update the parent to point at newNode
tree = newNode;
// assign balanceFactor = 0 to new node
tree->balanceFactor = balanced;
// broadcast message; balanceFactor value is modified
reviseBalanceFactor = 1;
}
// recursively move left if new data < current data
else if (newNode->data < tree->data)
{
AVLInsert(tree->left,newNode,rebalanceCurrNode);
// check if balanceFactor must be updated.
if (rebalanceCurrNode)
{
// went left from node that is left heavy. will
// violate AVL condition; use rotation (case 3)
if (tree->balanceFactor == leftheavy)
UpdateLeftTree(tree,reviseBalanceFactor);
// went left from balanced node. will create
// node left on the left. AVL condition OK (case 1)
else if (tree->balanceFactor == balanced)
{
tree->balanceFactor = leftheavy;
reviseBalanceFactor = 1;
}
// went left from node that is right heavy. will
// balance the node. AVL condition OK (case 2)
else
{
tree->balanceFactor = balanced;
reviseBalanceFactor = 0;
}
}
else
// no balancing occurs; do not ask previous nodes
reviseBalanceFactor = 0;
}
// otherwise recursively move right
else
{
AVLInsert(tree->right, newNode, rebalanceCurrNode);
// check if balanceFactor must be updated.
if (rebalanceCurrNode)
{
// went right from node that is left heavy. wil;
// balance the node. AVL condition OK (case 2)
if (tree->balanceFactor == leftheavy)
{
// scanning right subtree. node heavy on left.
// the node will become balanced
tree->balanceFactor = balanced;
reviseBalanceFactor = 0;
}
// went right from balanced node. will create
// node heavy on the right. AVL condition OK (case 1)
else if (tree->balanceFactor == balanced)
{
// node is balanced; will become heavy on right
tree->balanceFactor = rightheavy;
reviseBalanceFactor = 1;
}
// went right from node that is right heavy. will
// violate AVL condition; use rotation (case 3)
else
UpdateRightTree(tree, reviseBalanceFactor);
}
else
reviseBalanceFactor = 0;
}
}
void Tree::UpdateLeftTree (TreeNode* &p, int &reviseBalanceFactor)
{
TreeNode *lc;
lc = p->Left(); // left subtree is also heavy
if (lc->balanceFactor == leftheavy)
{
SingleRotateRight(p);
reviseBalanceFactor = 0;
}
// is right subtree heavy?
else if (lc->balanceFactor == rightheavy)
{
// make a double rotation
DoubleRotateRight(p);
// root is now balance
reviseBalanceFactor = 0;
}
}
void Tree::UpdateRightTree (TreeNode* &p, int &reviseBalanceFactor)
{
TreeNode *lc;
lc = p->Right(); // right subtree is also heavy
if (lc->balanceFactor == rightheavy)
{
SingleRotateLeft(p);
reviseBalanceFactor = 0;
}
// is left subtree heavy?
else if (lc->balanceFactor == leftheavy)
{
// make a double rotation
DoubleRotateLeft(p);
// root is now balance
reviseBalanceFactor = 0;
}
}
void Tree::SingleRotateRight (TreeNode* &p)
{
// the left subtree of p is heavy
TreeNode *lc;
// assign the left subtree to lc
lc = p->Left();
// update the balance factor for parent and left child
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
// any right subtree st of lc must continue as right
// subtree of lc. do by making it a left subtree of p
p->left = lc->Right();
// rotate p (larger node) into right subtree of lc
// make lc the pivot node
lc->right = p;
p = lc;
}
void Tree::SingleRotateLeft (TreeNode* &p)
{
// the right subtree of p is heavy
TreeNode *lc;
// assign the left subtree to lc
lc = p->Right();
// update the balance factor for parent and left child
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
// any right subtree st of lc must continue as right
// subtree of lc. do by making it a left subtree of p
p->right = lc->Left();
// rotate p (larger node) into right subtree of lc
// make lc the pivot node
lc->left = p;
p = lc;
}
// double rotation right about node p
void Tree::DoubleRotateRight (TreeNode* &p)
{
// two subtrees that are rotated
TreeNode *lc, *np;
// in the tree, node(lc) <= node(np) < node(p)
lc = p->Left(); // lc is left child of parent
np = lc->Right(); // np is right child of lc
// update balance factors for p, lc, and np
if (np->balanceFactor == rightheavy)
{
p->balanceFactor = balanced;
lc->balanceFactor = rightheavy;
}
else if (np->balanceFactor == balanced)
{
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
}
else
{
p->balanceFactor = rightheavy;
lc->balanceFactor = balanced;
}
np->balanceFactor = balanced;
// before np replaces the parent p, take care of subtrees
// detach old children and attach new children
lc->right = np->Left();
np->left = lc;
p->left = np->Right();
np->right = p;
p = np;
}
void Tree::DoubleRotateLeft (TreeNode* &p)
{
// two subtrees that are rotated
TreeNode *lc, *np;
// in the tree, node(lc) <= node(np) < node(p)
lc = p->Right(); // lc is right child of parent
np = lc->Left(); // np is left child of lc
// update balance factors for p, lc, and np
if (np->balanceFactor == leftheavy)
{
p->balanceFactor = balanced;
lc->balanceFactor = leftheavy;
}
else if (np->balanceFactor == balanced)
{
p->balanceFactor = balanced;
lc->balanceFactor = balanced;
}
else
{
p->balanceFactor = leftheavy;
lc->balanceFactor = balanced;
}
np->balanceFactor = balanced;
// before np replaces the parent p, take care of subtrees
// detach old children and attach new children
lc->left = np->Right();
np->right = lc;
p->right = np->Left();
np->left = p;
p = np;
}
// if item is in the tree, delete it
void Tree::Delete(const int& item)
{
// DNodePtr = pointer to node D that is deleted
// PNodePtr = pointer to parent P of node D
// RNodePtr = pointer to node R that replaces D
TreeNode *DNodePtr, *PNodePtr, *RNodePtr;
// search for a node containing data value item. obtain its
// node adress and that of its parent
if ((DNodePtr = FindNode (item, PNodePtr)) == NULL)
return;
// If D has NULL pointer, the
// replacement node is the one on the other branch
if (DNodePtr->right == NULL)
RNodePtr = DNodePtr->left;
else if (DNodePtr->left == NULL)
RNodePtr = DNodePtr->right;
// Both pointers of DNodePtr are non-NULL
else
{
// Find and unlink replacement node for D
// Starting on the left branch of node D,
// find node whose data value is the largest of all
// nodes whose values are less than the value in D
// Unlink the node from the tree
// PofRNodePtr = pointer to parent of replacement node
TreeNode *PofRNodePtr = DNodePtr;
// frist possible replacement is left child D
RNodePtr = DNodePtr->left;
// descend down right subtree of the left child of D
// keeping a record of current node and its parent.
// when we stop, we have found the replacement
while (RNodePtr->right != NULL)
{
PofRNodePtr = RNodePtr;
RNodePtr = RNodePtr;
}
if (PofRNodePtr == DNodePtr)
// left child of deleted node is the replacement
// assign right subtree of D to R
RNodePtr->right = DNodePtr->right;
else
{
// we moved at least one node down a right brance
// delete replacement node from tree by assigning
// its left branc to its parent
PofRNodePtr->right = RNodePtr->left;
// put replacement node in place of DNodePtr.
RNodePtr->left = DNodePtr->left;
RNodePtr->right = DNodePtr->right;
}
}
// complete the link to the parent node
// deleting the root node. assign new root
if (PNodePtr == NULL)
root = RNodePtr;
// attach R to the correct branch of P
else if (DNodePtr->data < PNodePtr->data)
PNodePtr->left = RNodePtr;
else
PNodePtr->right = RNodePtr;
// delete the node from memory and decrement list size
FreeTreeNode(DNodePtr); // this says FirstTreeNode in the book, should be a typo
size--;
}
// if current node is defined and its data value matches item,
// assign node value to item; otherwise, insert item in tree
void Tree::Update(const int& item)
{
if (current !=NULL && current->data == item)
current->data = item;
else
Insert(item, item);
}
// create duplicate of tree t; return the new root
TreeNode *Tree::CopyTree(TreeNode *t)
{
// variable newnode points at each new node that is
// created by a call to GetTreeNode and later attached to
// the new tree. newlptr and newrptr point to the child of
// newnode and are passed as parameters to GetTreeNode
TreeNode *newlptr, *newrptr, *newnode;
// stop the recursive scan when we arrive at an empty tree
if (t == NULL)
return NULL;
// CopyTree builds a new tree by scanning the nodes of t.
// At each node in t, CopyTree checks for a left child. if
// present it makes a copy of left child or returns NULL.
// the algorithm similarly checks for a right child.
// CopyTree builds a copy of node using GetTreeNode and
// appends copy of left and right children to node.
if (t->Left() !=NULL)
newlptr = CopyTree(t->Left());
else
newlptr = NULL;
if (t->Right() !=NULL)
newrptr = CopyTree(t->Right());
else
newrptr = NULL;
// Build new tree from the bottom up by building the two
// children and then building the parent
newnode = GetTreeNode(t->data, newlptr, newrptr);
// return a pointer to the newly created node
return newnode;
}
// us the postorder scanning algorithm to traverse the nodes in
// the tree and delete each node as the vist operation
void Tree::DeleteTree(TreeNode *t)
{
if (t != NULL)
{
DeleteTree(t->Left());
DeleteTree(t->Right());
if (t->GetAuxData() != NULL)
delete (TreeNode *) t->GetAuxData();
FreeTreeNode(t);
}
}
// call the function DeleteTree to deallocate the nodes. then
// set the root pointer back to NULL
void Tree::ClearTree(TreeNode * &t)
{
DeleteTree(t);
t = NULL; // root now NULL
}
// delete all nodes in list
void Tree::ClearList(void)
{
delete root;
delete current;
size = 0;
}
#endif