lammps/lib/cuda/atom_vec_cuda.cu

629 lines
21 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdio.h>
#define MY_PREFIX atom_vec_cuda
#include "cuda_shared.h"
#include "cuda_common.h"
#include "cuda_wrapper_cu.h"
#include "crm_cuda_utils.cu"
#include "atom_vec_cuda_kernel.cu"
int AtomVecCuda_CountDataItems(unsigned int data_mask)
{
int n = 0;
if(data_mask & X_MASK) n += 3;
if(data_mask & V_MASK) n += 3;
if(data_mask & F_MASK) n += 3;
if(data_mask & TAG_MASK) n++;
if(data_mask & TYPE_MASK) n++;
if(data_mask & MASK_MASK) n++;
if(data_mask & IMAGE_MASK) n++;
if(data_mask & Q_MASK) n++;
if(data_mask & MOLECULE_MASK) n++;
if(data_mask & RMASS_MASK) n++;
if(data_mask & RADIUS_MASK) n++;
if(data_mask & DENSITY_MASK) n++;
if(data_mask & OMEGA_MASK) n += 3;
if(data_mask & TORQUE_MASK) n++;
//if(data_mask & NSPECIAL_MASK) n+=3;
return n;
}
void Cuda_AtomVecCuda_UpdateBuffer(cuda_shared_data* sdata, int size)
{
if(sdata->buffersize < size) {
MYDBG(printf("Cuda_AtomVecCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*));
}
template <const unsigned int data_mask>
void Cuda_AtomVecCuda_UpdateNmax(cuda_shared_data* sdata)
{
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int));
cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*));
cudaMemcpyToSymbol(MY_AP(tag) , & sdata->atom.tag .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(mask) , & sdata->atom.mask .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(image) , & sdata->atom.image.dev_data, sizeof(int*));
if(data_mask & Q_MASK) cudaMemcpyToSymbol(MY_AP(q) , & sdata->atom.q .dev_data, sizeof(F_FLOAT*));
if(data_mask & MOLECULE_MASK) cudaMemcpyToSymbol(MY_AP(molecule) , & sdata->atom.molecule.dev_data, sizeof(int*));
if(data_mask & RADIUS_MASK) cudaMemcpyToSymbol(MY_AP(radius) , & sdata->atom.radius.dev_data, sizeof(int*));
if(data_mask & DENSITY_MASK) cudaMemcpyToSymbol(MY_AP(density) , & sdata->atom.density.dev_data, sizeof(int*));
if(data_mask & RMASS_MASK) cudaMemcpyToSymbol(MY_AP(rmass) , & sdata->atom.rmass.dev_data, sizeof(int*));
if(data_mask & OMEGA_MASK) cudaMemcpyToSymbol(MY_AP(omega) , & sdata->atom.omega.dev_data, sizeof(int*));
//if(data_mask & NSPECIAL_MASK) cudaMemcpyToSymbol(MY_AP(nspecial) , & sdata->atom.nspecial.dev_data, sizeof(int*) );
cudaMemcpyToSymbol(MY_AP(flag) , & sdata->flag, sizeof(int*));
}
template <const unsigned int data_mask>
void Cuda_AtomVecCuda_Init(cuda_shared_data* sdata)
{
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_Init ... start\n");)
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_Init ... post Nmax\n");)
cudaMemcpyToSymbol(MY_AP(prd) , sdata->domain.prd, 3 * sizeof(X_FLOAT));
cudaMemcpyToSymbol(MY_AP(sublo) , & sdata->domain.sublo, 3 * sizeof(X_FLOAT));
cudaMemcpyToSymbol(MY_AP(subhi) , & sdata->domain.subhi, 3 * sizeof(X_FLOAT));
cudaMemcpyToSymbol(MY_AP(flag) , & sdata->flag, sizeof(int*));
cudaThreadSynchronize();
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_Init ... end\n");)
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackComm(cuda_shared_data* sdata, int n, int iswap, void* buf_send, int* pbc, int pbc_flag)
{
timespec time1, time2;
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int n_data_items = AtomVecCuda_CountDataItems(data_mask);
int size = (n * n_data_items) * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
X_FLOAT dx = 0.0;
X_FLOAT dy = 0.0;
X_FLOAT dz = 0.0;
if(pbc_flag != 0) {
if(sdata->domain.triclinic == 0) {
dx = pbc[0] * sdata->domain.prd[0];
dy = pbc[1] * sdata->domain.prd[1];
dz = pbc[2] * sdata->domain.prd[2];
} else {
dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz;
dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz;
dz = pbc[2] * sdata->domain.prd[2];
}
}
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
cudaMemset(sdata->flag, 0, sizeof(int));
clock_gettime(CLOCK_REALTIME, &time1);
void* buf = sdata->overlap_comm ? sdata->comm.buf_send_dev[iswap] : sdata->buffer;
Cuda_AtomVecCuda_PackComm_Kernel<data_mask> <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n
, sdata->comm.maxlistlength, iswap, dx, dy, dz, buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_forward_kernel_pack +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed");
if(not sdata->overlap_comm)
cudaMemcpy(buf_send, sdata->buffer, n* n_data_items* sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
//cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_forward_download +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
int aflag;
cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
if(aflag != 0) printf("aflag PackComm: %i\n", aflag);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed");
}
return n_data_items * n;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackComm_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag)
{
MYDBG(printf(" # CUDA: AtomVecCuda_PackComm_Self\n");)
timespec time1, time2;
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int n_data_items = AtomVecCuda_CountDataItems(data_mask);
int size = (n * n_data_items) * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
static int count = -1;
count++;
X_FLOAT dx = 0.0;
X_FLOAT dy = 0.0;
X_FLOAT dz = 0.0;
if(pbc_flag != 0) {
if(sdata->domain.triclinic == 0) {
dx = pbc[0] * sdata->domain.prd[0];
dy = pbc[1] * sdata->domain.prd[1];
dz = pbc[2] * sdata->domain.prd[2];
} else {
dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz;
dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz;
dz = pbc[2] * sdata->domain.prd[2];
}
}
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
clock_gettime(CLOCK_REALTIME, &time1);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self:Pre Kernel execution failed");
Cuda_AtomVecCuda_PackComm_Self_Kernel<data_mask> <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_forward_kernel_self +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self: Kernel execution failed");
}
return n_data_items * n;
}
template <const unsigned int data_mask>
void Cuda_AtomVecCuda_UnpackComm(cuda_shared_data* sdata, int n, int first, void* buf_recv, int iswap)
{
timespec time1, time2;
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int n_data_items = AtomVecCuda_CountDataItems(data_mask);
int size = (n * n_data_items) * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
clock_gettime(CLOCK_REALTIME, &time1);
if(not sdata->overlap_comm || iswap < 0)
cudaMemcpy(sdata->buffer, (void*)buf_recv, n_data_items * n * sizeof(X_FLOAT), cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_forward_upload +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
void* buf = (sdata->overlap_comm && iswap >= 0) ? sdata->comm.buf_recv_dev[iswap] : sdata->buffer;
Cuda_AtomVecCuda_UnpackComm_Kernel<data_mask> <<< grid, threads, 0>>>(n, first, buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_forward_kernel_unpack +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackComm: Kernel execution failed");
}
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackExchangeList(cuda_shared_data* sdata, int n, int dim, void* buf_send)
{
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... start dim %i \n", dim);)
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: pre Kernel execution failed");
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
Cuda_AtomVecCuda_Init<data_mask>(sdata);
int size = n * sizeof(double);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
cudaMemset((int*)(sdata->buffer), 0, sizeof(int));
int3 layout = getgrid(sdata->atom.nlocal, sizeof(int), 256, true);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
timespec time1, time2;
clock_gettime(CLOCK_REALTIME, &time1);
Cuda_AtomVecCuda_PackExchangeList_Kernel <<< grid, threads, (threads.x + 1)*sizeof(int) >>> (n - 1, dim);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: Kernel execution failed");
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_exchange_kernel_pack +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
cudaMemcpy(buf_send, sdata->buffer, sizeof(double), cudaMemcpyDeviceToHost);
int return_value = ((int*) buf_send)[0];
if(n > 1 + return_value)
cudaMemcpy(buf_send, sdata->buffer, (1 + return_value)*sizeof(double), cudaMemcpyDeviceToHost);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: return copy failed");
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_exchange_download +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... done\n");)
return return_value;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackExchange(cuda_shared_data* sdata, int nsend, void* buf_send, void* copylist)
{
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... start \n");)
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
//if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int n_data_items = AtomVecCuda_CountDataItems(data_mask) + 1;
int size = (nsend * n_data_items + 1) * sizeof(double);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
cudaMemset((int*)(sdata->buffer), 0, sizeof(int));
int3 layout = getgrid(nsend, 0);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
timespec time1, time2;
clock_gettime(CLOCK_REALTIME, &time1);
Cuda_AtomVecCuda_PackExchange_Kernel<data_mask> <<< grid, threads, 0>>>(nsend, (int*) copylist);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchange: Kernel execution failed");
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_exchange_kernel_pack +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost);
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_exchange_download +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
MYDBG(printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... done\n");)
return nsend * n_data_items + 1;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_UnpackExchange(cuda_shared_data* sdata, int nsend, void* buf_send, void* copylist)
{
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int n_data_items = AtomVecCuda_CountDataItems(data_mask) + 1;
int size = (nsend * n_data_items + 1) * sizeof(double);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
cudaMemcpyToSymbol(MY_AP(flag) , & sdata->flag, sizeof(int*));
cudaMemset((int*)(sdata->flag), 0, sizeof(int));
if(nsend) {
int3 layout = getgrid(nsend, 0);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
timespec time1, time2;
clock_gettime(CLOCK_REALTIME, &time1);
cudaMemcpy(sdata->buffer, buf_send , size, cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_exchange_upload +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
Cuda_AtomVecCuda_UnpackExchange_Kernel<data_mask> <<< grid, threads, 0>>>(sdata->exchange_dim, nsend, (int*) copylist);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_exchange_kernel_unpack +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackExchange: Kernel execution failed");
}
}
int naccept;
cudaMemcpy((void*)&naccept, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
return naccept;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackBorder(cuda_shared_data* sdata, int nsend, int iswap, void* buf_send, int* pbc, int pbc_flag)
{
timespec atime1, atime2;
clock_gettime(CLOCK_REALTIME, &atime1);
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
clock_gettime(CLOCK_REALTIME, &atime2);
sdata->cuda_timings.test1 +=
atime2.tv_sec - atime1.tv_sec + 1.0 * (atime2.tv_nsec - atime1.tv_nsec) / 1000000000;
int n_data_items = AtomVecCuda_CountDataItems(data_mask);
int size = nsend * n_data_items * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
X_FLOAT dx = 0.0;
X_FLOAT dy = 0.0;
X_FLOAT dz = 0.0;
if(pbc_flag != 0) {
if(sdata->domain.triclinic == 0) {
dx = pbc[0] * sdata->domain.prd[0];
dy = pbc[1] * sdata->domain.prd[1];
dz = pbc[2] * sdata->domain.prd[2];
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
}
int3 layout = getgrid(nsend);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
timespec time1, time2;
clock_gettime(CLOCK_REALTIME, &time1);
Cuda_AtomVecCuda_PackBorder_Kernel<data_mask> <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, nsend, sdata->comm.maxlistlength, iswap, dx, dy, dz);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_border_kernel_pack +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder: Kernel execution failed");
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_border_download +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
}
return nsend * n_data_items;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackBorder_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag)
{
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int n_data_items = AtomVecCuda_CountDataItems(data_mask);
int size = n * n_data_items * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
X_FLOAT dx = 0.0;
X_FLOAT dy = 0.0;
X_FLOAT dz = 0.0;
if(pbc_flag != 0) {
if(sdata->domain.triclinic == 0) {
dx = pbc[0] * sdata->domain.prd[0];
dy = pbc[1] * sdata->domain.prd[1];
dz = pbc[2] * sdata->domain.prd[2];
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
}
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
timespec time1, time2;
clock_gettime(CLOCK_REALTIME, &time1);
Cuda_AtomVecCuda_PackBorder_Self_Kernel<data_mask> <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_border_kernel_self +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder_Self: Kernel execution failed");
}
return n * n_data_items;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_UnpackBorder(cuda_shared_data* sdata, int n, int first, void* buf_recv)
{
timespec atime1, atime2;
clock_gettime(CLOCK_REALTIME, &atime1);
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
clock_gettime(CLOCK_REALTIME, &atime2);
sdata->cuda_timings.test1 +=
atime2.tv_sec - atime1.tv_sec + 1.0 * (atime2.tv_nsec - atime1.tv_nsec) / 1000000000;
int n_data_items = AtomVecCuda_CountDataItems(data_mask);
int size = n * n_data_items * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata, size);
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
timespec time1, time2;
clock_gettime(CLOCK_REALTIME, &time1);
cudaMemset((int*)(sdata->flag), 0, sizeof(int));
cudaMemcpy(sdata->buffer, (void*)buf_recv, size, cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME, &time2);
sdata->cuda_timings.comm_border_upload +=
time2.tv_sec - time1.tv_sec + 1.0 * (time2.tv_nsec - time1.tv_nsec) / 1000000000;
Cuda_AtomVecCuda_UnpackBorder_Kernel<data_mask> <<< grid, threads, 0>>>(n, first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &time1);
sdata->cuda_timings.comm_border_kernel_unpack +=
time1.tv_sec - time2.tv_sec + 1.0 * (time1.tv_nsec - time2.tv_nsec) / 1000000000;
cudaMemcpy(&sdata->comm.grow_flag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackBorder: Kernel execution failed");
}
return sdata->comm.grow_flag;
}
#include "atom_vec_angle_cuda.cu"
#include "atom_vec_atomic_cuda.cu"
#include "atom_vec_charge_cuda.cu"
#include "atom_vec_full_cuda.cu"
//#include "atom_vec_granular_cuda.cu"