forked from lijiext/lammps
315 lines
8.9 KiB
C
315 lines
8.9 KiB
C
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Mike Brown (ORNL), brownw@ornl.gov
|
|
------------------------------------------------------------------------- */
|
|
|
|
#ifndef GB_GPU_EXTRA_H
|
|
#define GB_GPU_EXTRA_H
|
|
|
|
#define MAX_SHARED_TYPES 8
|
|
enum{SPHERE_SPHERE,SPHERE_ELLIPSE,ELLIPSE_SPHERE,ELLIPSE_ELLIPSE};
|
|
|
|
#ifdef _DOUBLE_DOUBLE
|
|
#define numtyp double
|
|
#define numtyp2 double2
|
|
#define numtyp4 double4
|
|
#define acctyp double
|
|
#define acctyp4 double4
|
|
#endif
|
|
|
|
#ifdef _SINGLE_DOUBLE
|
|
#define numtyp float
|
|
#define numtyp2 float2
|
|
#define numtyp4 float4
|
|
#define acctyp double
|
|
#define acctyp4 double4
|
|
#endif
|
|
|
|
#ifndef numtyp
|
|
#define numtyp float
|
|
#define numtyp2 float2
|
|
#define numtyp4 float4
|
|
#define acctyp float
|
|
#define acctyp4 float4
|
|
#endif
|
|
|
|
#ifdef NV_KERNEL
|
|
|
|
#include "geryon/ucl_nv_kernel.h"
|
|
|
|
#else
|
|
|
|
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
|
#define GLOBAL_ID_X get_global_id(0)
|
|
#define THREAD_ID_X get_local_id(0)
|
|
#define BLOCK_ID_X get_group_id(0)
|
|
#define BLOCK_SIZE_X get_local_size(0)
|
|
#define __syncthreads() barrier(CLK_LOCAL_MEM_FENCE)
|
|
#define __inline inline
|
|
|
|
#endif
|
|
|
|
/* ----------------------------------------------------------------------
|
|
dot product of 2 vectors
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline numtyp gpu_dot3(const numtyp *v1, const numtyp *v2)
|
|
{
|
|
return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
cross product of 2 vectors
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_cross3(const numtyp *v1, const numtyp *v2, numtyp *ans)
|
|
{
|
|
ans[0] = v1[1]*v2[2]-v1[2]*v2[1];
|
|
ans[1] = v1[2]*v2[0]-v1[0]*v2[2];
|
|
ans[2] = v1[0]*v2[1]-v1[1]*v2[0];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
determinant of a matrix
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline numtyp gpu_det3(const numtyp m[9])
|
|
{
|
|
numtyp ans = m[0]*m[4]*m[8] - m[0]*m[5]*m[7] -
|
|
m[3]*m[1]*m[8] + m[3]*m[2]*m[7] +
|
|
m[6]*m[1]*m[5] - m[6]*m[2]*m[4];
|
|
return ans;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
diagonal matrix times a full matrix
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_times3(const numtyp4 shape, const numtyp m[9],
|
|
numtyp ans[9])
|
|
{
|
|
ans[0] = shape.x*m[0];
|
|
ans[1] = shape.x*m[1];
|
|
ans[2] = shape.x*m[2];
|
|
ans[3] = shape.y*m[3];
|
|
ans[4] = shape.y*m[4];
|
|
ans[5] = shape.y*m[5];
|
|
ans[6] = shape.z*m[6];
|
|
ans[7] = shape.z*m[7];
|
|
ans[8] = shape.z*m[8];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
add two matrices
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_plus3(const numtyp m[9], const numtyp m2[9], numtyp ans[9])
|
|
{
|
|
ans[0] = m[0]+m2[0];
|
|
ans[1] = m[1]+m2[1];
|
|
ans[2] = m[2]+m2[2];
|
|
ans[3] = m[3]+m2[3];
|
|
ans[4] = m[4]+m2[4];
|
|
ans[5] = m[5]+m2[5];
|
|
ans[6] = m[6]+m2[6];
|
|
ans[7] = m[7]+m2[7];
|
|
ans[8] = m[8]+m2[8];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
multiply the transpose of mat1 times mat2
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_transpose_times3(const numtyp m[9], const numtyp m2[9],
|
|
numtyp ans[9])
|
|
{
|
|
ans[0] = m[0]*m2[0]+m[3]*m2[3]+m[6]*m2[6];
|
|
ans[1] = m[0]*m2[1]+m[3]*m2[4]+m[6]*m2[7];
|
|
ans[2] = m[0]*m2[2]+m[3]*m2[5]+m[6]*m2[8];
|
|
ans[3] = m[1]*m2[0]+m[4]*m2[3]+m[7]*m2[6];
|
|
ans[4] = m[1]*m2[1]+m[4]*m2[4]+m[7]*m2[7];
|
|
ans[5] = m[1]*m2[2]+m[4]*m2[5]+m[7]*m2[8];
|
|
ans[6] = m[2]*m2[0]+m[5]*m2[3]+m[8]*m2[6];
|
|
ans[7] = m[2]*m2[1]+m[5]*m2[4]+m[8]*m2[7];
|
|
ans[8] = m[2]*m2[2]+m[5]*m2[5]+m[8]*m2[8];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
row vector times matrix
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_row_times3(const numtyp *v, const numtyp m[9], numtyp *ans)
|
|
{
|
|
ans[0] = m[0]*v[0]+v[1]*m[3]+v[2]*m[6];
|
|
ans[1] = v[0]*m[1]+m[4]*v[1]+v[2]*m[7];
|
|
ans[2] = v[0]*m[2]+v[1]*m[5]+m[8]*v[2];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
solve Ax = b or M ans = v
|
|
use gaussian elimination & partial pivoting on matrix
|
|
error_flag set to 2 if bad matrix inversion attempted
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_mldivide3(const numtyp m[9], const numtyp *v, numtyp *ans,
|
|
__global int *error_flag)
|
|
{
|
|
// create augmented matrix for pivoting
|
|
|
|
numtyp aug[12], t;
|
|
|
|
aug[3] = v[0];
|
|
aug[0] = m[0];
|
|
aug[1] = m[1];
|
|
aug[2] = m[2];
|
|
aug[7] = v[1];
|
|
aug[4] = m[3];
|
|
aug[5] = m[4];
|
|
aug[6] = m[5];
|
|
aug[11] = v[2];
|
|
aug[8] = m[6];
|
|
aug[9] = m[7];
|
|
aug[10] = m[8];
|
|
|
|
if (fabs(aug[4]) > fabs(aug[0])) {
|
|
numtyp swapt;
|
|
swapt=aug[0]; aug[0]=aug[4]; aug[4]=swapt;
|
|
swapt=aug[1]; aug[1]=aug[5]; aug[5]=swapt;
|
|
swapt=aug[2]; aug[2]=aug[6]; aug[6]=swapt;
|
|
swapt=aug[3]; aug[3]=aug[7]; aug[7]=swapt;
|
|
}
|
|
if (fabs(aug[8]) > fabs(aug[0])) {
|
|
numtyp swapt;
|
|
swapt=aug[0]; aug[0]=aug[8]; aug[8]=swapt;
|
|
swapt=aug[1]; aug[1]=aug[9]; aug[9]=swapt;
|
|
swapt=aug[2]; aug[2]=aug[10]; aug[10]=swapt;
|
|
swapt=aug[3]; aug[3]=aug[11]; aug[11]=swapt;
|
|
}
|
|
|
|
if (aug[0] != (numtyp)0.0) {
|
|
if (0!=0) {
|
|
numtyp swapt;
|
|
swapt=aug[0]; aug[0]=aug[0]; aug[0]=swapt;
|
|
swapt=aug[1]; aug[1]=aug[1]; aug[1]=swapt;
|
|
swapt=aug[2]; aug[2]=aug[2]; aug[2]=swapt;
|
|
swapt=aug[3]; aug[3]=aug[3]; aug[3]=swapt;
|
|
}
|
|
} else if (aug[4] != (numtyp)0.0) {
|
|
if (1!=0) {
|
|
numtyp swapt;
|
|
swapt=aug[0]; aug[0]=aug[4]; aug[4]=swapt;
|
|
swapt=aug[1]; aug[1]=aug[5]; aug[5]=swapt;
|
|
swapt=aug[2]; aug[2]=aug[6]; aug[6]=swapt;
|
|
swapt=aug[3]; aug[3]=aug[7]; aug[7]=swapt;
|
|
}
|
|
} else if (aug[8] != (numtyp)0.0) {
|
|
if (2!=0) {
|
|
numtyp swapt;
|
|
swapt=aug[0]; aug[0]=aug[8]; aug[8]=swapt;
|
|
swapt=aug[1]; aug[1]=aug[9]; aug[9]=swapt;
|
|
swapt=aug[2]; aug[2]=aug[10]; aug[10]=swapt;
|
|
swapt=aug[3]; aug[3]=aug[11]; aug[11]=swapt;
|
|
}
|
|
} else
|
|
*error_flag=2;
|
|
|
|
t = aug[4]/aug[0];
|
|
aug[5]-=t*aug[1];
|
|
aug[6]-=t*aug[2];
|
|
aug[7]-=t*aug[3];
|
|
t = aug[8]/aug[0];
|
|
aug[9]-=t*aug[1];
|
|
aug[10]-=t*aug[2];
|
|
aug[11]-=t*aug[3];
|
|
|
|
if (fabs(aug[9]) > fabs(aug[5])) {
|
|
numtyp swapt;
|
|
swapt=aug[4]; aug[4]=aug[8]; aug[8]=swapt;
|
|
swapt=aug[5]; aug[5]=aug[9]; aug[9]=swapt;
|
|
swapt=aug[6]; aug[6]=aug[10]; aug[10]=swapt;
|
|
swapt=aug[7]; aug[7]=aug[11]; aug[11]=swapt;
|
|
}
|
|
|
|
if (aug[5] != (numtyp)0.0) {
|
|
if (1!=1) {
|
|
numtyp swapt;
|
|
swapt=aug[4]; aug[4]=aug[4]; aug[4]=swapt;
|
|
swapt=aug[5]; aug[5]=aug[5]; aug[5]=swapt;
|
|
swapt=aug[6]; aug[6]=aug[6]; aug[6]=swapt;
|
|
swapt=aug[7]; aug[7]=aug[7]; aug[7]=swapt;
|
|
}
|
|
} else if (aug[9] != (numtyp)0.0) {
|
|
if (2!=1) {
|
|
numtyp swapt;
|
|
swapt=aug[4]; aug[4]=aug[8]; aug[8]=swapt;
|
|
swapt=aug[5]; aug[5]=aug[9]; aug[9]=swapt;
|
|
swapt=aug[6]; aug[6]=aug[10]; aug[10]=swapt;
|
|
swapt=aug[7]; aug[7]=aug[11]; aug[11]=swapt;
|
|
}
|
|
}
|
|
|
|
t = aug[9]/aug[5];
|
|
aug[10]-=t*aug[6];
|
|
aug[11]-=t*aug[7];
|
|
|
|
if (aug[10] == (numtyp)0.0)
|
|
*error_flag=2;
|
|
|
|
ans[2] = aug[11]/aug[10];
|
|
t = (numtyp)0.0;
|
|
t += aug[6]*ans[2];
|
|
ans[1] = (aug[7]-t) / aug[5];
|
|
t = (numtyp)0.0;
|
|
t += aug[1]*ans[1];
|
|
t += aug[2]*ans[2];
|
|
ans[0] = (aug[3]-t) / aug[0];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute rotation matrix from quaternion conjugate
|
|
quat = [w i j k]
|
|
------------------------------------------------------------------------- */
|
|
|
|
__inline void gpu_quat_to_mat_trans(__global const numtyp4 *qif, const int qi,
|
|
numtyp mat[9])
|
|
{
|
|
numtyp4 q=qif[qi];
|
|
|
|
numtyp w2 = q.x*q.x;
|
|
numtyp i2 = q.y*q.y;
|
|
numtyp j2 = q.z*q.z;
|
|
numtyp k2 = q.w*q.w;
|
|
numtyp twoij = (numtyp)2.0*q.y*q.z;
|
|
numtyp twoik = (numtyp)2.0*q.y*q.w;
|
|
numtyp twojk = (numtyp)2.0*q.z*q.w;
|
|
numtyp twoiw = (numtyp)2.0*q.y*q.x;
|
|
numtyp twojw = (numtyp)2.0*q.z*q.x;
|
|
numtyp twokw = (numtyp)2.0*q.w*q.x;
|
|
|
|
mat[0] = w2+i2-j2-k2;
|
|
mat[3] = twoij-twokw;
|
|
mat[6] = twojw+twoik;
|
|
|
|
mat[1] = twoij+twokw;
|
|
mat[4] = w2-i2+j2-k2;
|
|
mat[7] = twojk-twoiw;
|
|
|
|
mat[2] = twoik-twojw;
|
|
mat[5] = twojk+twoiw;
|
|
mat[8] = w2-i2-j2+k2;
|
|
}
|
|
|
|
#endif
|