forked from lijiext/lammps
437 lines
15 KiB
Fortran
437 lines
15 KiB
Fortran
*> \brief \b DLASR applies a sequence of plane rotations to a general rectangular matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLASR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIRECT, PIVOT, SIDE
|
|
* INTEGER LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLASR applies a sequence of plane rotations to a real matrix A,
|
|
*> from either the left or the right.
|
|
*>
|
|
*> When SIDE = 'L', the transformation takes the form
|
|
*>
|
|
*> A := P*A
|
|
*>
|
|
*> and when SIDE = 'R', the transformation takes the form
|
|
*>
|
|
*> A := A*P**T
|
|
*>
|
|
*> where P is an orthogonal matrix consisting of a sequence of z plane
|
|
*> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
|
|
*> and P**T is the transpose of P.
|
|
*>
|
|
*> When DIRECT = 'F' (Forward sequence), then
|
|
*>
|
|
*> P = P(z-1) * ... * P(2) * P(1)
|
|
*>
|
|
*> and when DIRECT = 'B' (Backward sequence), then
|
|
*>
|
|
*> P = P(1) * P(2) * ... * P(z-1)
|
|
*>
|
|
*> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
|
|
*>
|
|
*> R(k) = ( c(k) s(k) )
|
|
*> = ( -s(k) c(k) ).
|
|
*>
|
|
*> When PIVOT = 'V' (Variable pivot), the rotation is performed
|
|
*> for the plane (k,k+1), i.e., P(k) has the form
|
|
*>
|
|
*> P(k) = ( 1 )
|
|
*> ( ... )
|
|
*> ( 1 )
|
|
*> ( c(k) s(k) )
|
|
*> ( -s(k) c(k) )
|
|
*> ( 1 )
|
|
*> ( ... )
|
|
*> ( 1 )
|
|
*>
|
|
*> where R(k) appears as a rank-2 modification to the identity matrix in
|
|
*> rows and columns k and k+1.
|
|
*>
|
|
*> When PIVOT = 'T' (Top pivot), the rotation is performed for the
|
|
*> plane (1,k+1), so P(k) has the form
|
|
*>
|
|
*> P(k) = ( c(k) s(k) )
|
|
*> ( 1 )
|
|
*> ( ... )
|
|
*> ( 1 )
|
|
*> ( -s(k) c(k) )
|
|
*> ( 1 )
|
|
*> ( ... )
|
|
*> ( 1 )
|
|
*>
|
|
*> where R(k) appears in rows and columns 1 and k+1.
|
|
*>
|
|
*> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
|
|
*> performed for the plane (k,z), giving P(k) the form
|
|
*>
|
|
*> P(k) = ( 1 )
|
|
*> ( ... )
|
|
*> ( 1 )
|
|
*> ( c(k) s(k) )
|
|
*> ( 1 )
|
|
*> ( ... )
|
|
*> ( 1 )
|
|
*> ( -s(k) c(k) )
|
|
*>
|
|
*> where R(k) appears in rows and columns k and z. The rotations are
|
|
*> performed without ever forming P(k) explicitly.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> Specifies whether the plane rotation matrix P is applied to
|
|
*> A on the left or the right.
|
|
*> = 'L': Left, compute A := P*A
|
|
*> = 'R': Right, compute A:= A*P**T
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PIVOT
|
|
*> \verbatim
|
|
*> PIVOT is CHARACTER*1
|
|
*> Specifies the plane for which P(k) is a plane rotation
|
|
*> matrix.
|
|
*> = 'V': Variable pivot, the plane (k,k+1)
|
|
*> = 'T': Top pivot, the plane (1,k+1)
|
|
*> = 'B': Bottom pivot, the plane (k,z)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIRECT
|
|
*> \verbatim
|
|
*> DIRECT is CHARACTER*1
|
|
*> Specifies whether P is a forward or backward sequence of
|
|
*> plane rotations.
|
|
*> = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
|
|
*> = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. If m <= 1, an immediate
|
|
*> return is effected.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. If n <= 1, an
|
|
*> immediate return is effected.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array, dimension
|
|
*> (M-1) if SIDE = 'L'
|
|
*> (N-1) if SIDE = 'R'
|
|
*> The cosines c(k) of the plane rotations.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension
|
|
*> (M-1) if SIDE = 'L'
|
|
*> (N-1) if SIDE = 'R'
|
|
*> The sines s(k) of the plane rotations. The 2-by-2 plane
|
|
*> rotation part of the matrix P(k), R(k), has the form
|
|
*> R(k) = ( c(k) s(k) )
|
|
*> ( -s(k) c(k) ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> The M-by-N matrix A. On exit, A is overwritten by P*A if
|
|
*> SIDE = 'R' or by A*P**T if SIDE = 'L'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date September 2012
|
|
*
|
|
*> \ingroup auxOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.4.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* September 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIRECT, PIVOT, SIDE
|
|
INTEGER LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, INFO, J
|
|
DOUBLE PRECISION CTEMP, STEMP, TEMP
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
|
|
INFO = 1
|
|
ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
|
|
$ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
|
|
INFO = 2
|
|
ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
|
|
$ THEN
|
|
INFO = 3
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = 4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = 5
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = 9
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLASR ', INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
|
|
$ RETURN
|
|
IF( LSAME( SIDE, 'L' ) ) THEN
|
|
*
|
|
* Form P * A
|
|
*
|
|
IF( LSAME( PIVOT, 'V' ) ) THEN
|
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
|
DO 20 J = 1, M - 1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 10 I = 1, N
|
|
TEMP = A( J+1, I )
|
|
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
|
|
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
|
|
10 CONTINUE
|
|
END IF
|
|
20 CONTINUE
|
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
|
DO 40 J = M - 1, 1, -1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 30 I = 1, N
|
|
TEMP = A( J+1, I )
|
|
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
|
|
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
|
|
30 CONTINUE
|
|
END IF
|
|
40 CONTINUE
|
|
END IF
|
|
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
|
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
|
DO 60 J = 2, M
|
|
CTEMP = C( J-1 )
|
|
STEMP = S( J-1 )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 50 I = 1, N
|
|
TEMP = A( J, I )
|
|
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
|
|
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
|
|
50 CONTINUE
|
|
END IF
|
|
60 CONTINUE
|
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
|
DO 80 J = M, 2, -1
|
|
CTEMP = C( J-1 )
|
|
STEMP = S( J-1 )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 70 I = 1, N
|
|
TEMP = A( J, I )
|
|
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
|
|
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
|
|
70 CONTINUE
|
|
END IF
|
|
80 CONTINUE
|
|
END IF
|
|
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
|
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
|
DO 100 J = 1, M - 1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 90 I = 1, N
|
|
TEMP = A( J, I )
|
|
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
|
|
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
|
|
90 CONTINUE
|
|
END IF
|
|
100 CONTINUE
|
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
|
DO 120 J = M - 1, 1, -1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 110 I = 1, N
|
|
TEMP = A( J, I )
|
|
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
|
|
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
|
|
110 CONTINUE
|
|
END IF
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
|
|
*
|
|
* Form A * P**T
|
|
*
|
|
IF( LSAME( PIVOT, 'V' ) ) THEN
|
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
|
DO 140 J = 1, N - 1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 130 I = 1, M
|
|
TEMP = A( I, J+1 )
|
|
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
|
|
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
|
|
130 CONTINUE
|
|
END IF
|
|
140 CONTINUE
|
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
|
DO 160 J = N - 1, 1, -1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 150 I = 1, M
|
|
TEMP = A( I, J+1 )
|
|
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
|
|
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
|
|
150 CONTINUE
|
|
END IF
|
|
160 CONTINUE
|
|
END IF
|
|
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
|
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
|
DO 180 J = 2, N
|
|
CTEMP = C( J-1 )
|
|
STEMP = S( J-1 )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 170 I = 1, M
|
|
TEMP = A( I, J )
|
|
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
|
|
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
|
|
170 CONTINUE
|
|
END IF
|
|
180 CONTINUE
|
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
|
DO 200 J = N, 2, -1
|
|
CTEMP = C( J-1 )
|
|
STEMP = S( J-1 )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 190 I = 1, M
|
|
TEMP = A( I, J )
|
|
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
|
|
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
|
|
190 CONTINUE
|
|
END IF
|
|
200 CONTINUE
|
|
END IF
|
|
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
|
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
|
DO 220 J = 1, N - 1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 210 I = 1, M
|
|
TEMP = A( I, J )
|
|
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
|
|
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
|
|
210 CONTINUE
|
|
END IF
|
|
220 CONTINUE
|
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
|
DO 240 J = N - 1, 1, -1
|
|
CTEMP = C( J )
|
|
STEMP = S( J )
|
|
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
|
DO 230 I = 1, M
|
|
TEMP = A( I, J )
|
|
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
|
|
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
|
|
230 CONTINUE
|
|
END IF
|
|
240 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLASR
|
|
*
|
|
END
|