forked from lijiext/lammps
515 lines
17 KiB
Fortran
515 lines
17 KiB
Fortran
*> \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLASDA + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
|
|
* DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
|
|
* PERM, GIVNUM, C, S, WORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
|
|
* $ K( * ), PERM( LDGCOL, * )
|
|
* DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
|
|
* $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
|
|
* $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
|
|
* $ Z( LDU, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Using a divide and conquer approach, DLASDA computes the singular
|
|
*> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
|
|
*> B with diagonal D and offdiagonal E, where M = N + SQRE. The
|
|
*> algorithm computes the singular values in the SVD B = U * S * VT.
|
|
*> The orthogonal matrices U and VT are optionally computed in
|
|
*> compact form.
|
|
*>
|
|
*> A related subroutine, DLASD0, computes the singular values and
|
|
*> the singular vectors in explicit form.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ICOMPQ
|
|
*> \verbatim
|
|
*> ICOMPQ is INTEGER
|
|
*> Specifies whether singular vectors are to be computed
|
|
*> in compact form, as follows
|
|
*> = 0: Compute singular values only.
|
|
*> = 1: Compute singular vectors of upper bidiagonal
|
|
*> matrix in compact form.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SMLSIZ
|
|
*> \verbatim
|
|
*> SMLSIZ is INTEGER
|
|
*> The maximum size of the subproblems at the bottom of the
|
|
*> computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The row dimension of the upper bidiagonal matrix. This is
|
|
*> also the dimension of the main diagonal array D.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SQRE
|
|
*> \verbatim
|
|
*> SQRE is INTEGER
|
|
*> Specifies the column dimension of the bidiagonal matrix.
|
|
*> = 0: The bidiagonal matrix has column dimension M = N;
|
|
*> = 1: The bidiagonal matrix has column dimension M = N + 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension ( N )
|
|
*> On entry D contains the main diagonal of the bidiagonal
|
|
*> matrix. On exit D, if INFO = 0, contains its singular values.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension ( M-1 )
|
|
*> Contains the subdiagonal entries of the bidiagonal matrix.
|
|
*> On exit, E has been destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is DOUBLE PRECISION array,
|
|
*> dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
|
|
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
|
|
*> singular vector matrices of all subproblems at the bottom
|
|
*> level.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER, LDU = > N.
|
|
*> The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
|
|
*> GIVNUM, and Z.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VT
|
|
*> \verbatim
|
|
*> VT is DOUBLE PRECISION array,
|
|
*> dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
|
|
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
|
|
*> singular vector matrices of all subproblems at the bottom
|
|
*> level.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] K
|
|
*> \verbatim
|
|
*> K is INTEGER array,
|
|
*> dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
|
|
*> If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
|
|
*> secular equation on the computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIFL
|
|
*> \verbatim
|
|
*> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
|
|
*> where NLVL = floor(log_2 (N/SMLSIZ))).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIFR
|
|
*> \verbatim
|
|
*> DIFR is DOUBLE PRECISION array,
|
|
*> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
|
|
*> dimension ( N ) if ICOMPQ = 0.
|
|
*> If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
|
|
*> record distances between singular values on the I-th
|
|
*> level and singular values on the (I -1)-th level, and
|
|
*> DIFR(1:N, 2 * I ) contains the normalizing factors for
|
|
*> the right singular vector matrix. See DLASD8 for details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array,
|
|
*> dimension ( LDU, NLVL ) if ICOMPQ = 1 and
|
|
*> dimension ( N ) if ICOMPQ = 0.
|
|
*> The first K elements of Z(1, I) contain the components of
|
|
*> the deflation-adjusted updating row vector for subproblems
|
|
*> on the I-th level.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] POLES
|
|
*> \verbatim
|
|
*> POLES is DOUBLE PRECISION array,
|
|
*> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
|
|
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
|
|
*> POLES(1, 2*I) contain the new and old singular values
|
|
*> involved in the secular equations on the I-th level.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] GIVPTR
|
|
*> \verbatim
|
|
*> GIVPTR is INTEGER array,
|
|
*> dimension ( N ) if ICOMPQ = 1, and not referenced if
|
|
*> ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
|
|
*> the number of Givens rotations performed on the I-th
|
|
*> problem on the computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] GIVCOL
|
|
*> \verbatim
|
|
*> GIVCOL is INTEGER array,
|
|
*> dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
|
|
*> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
|
|
*> GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
|
|
*> of Givens rotations performed on the I-th level on the
|
|
*> computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDGCOL
|
|
*> \verbatim
|
|
*> LDGCOL is INTEGER, LDGCOL = > N.
|
|
*> The leading dimension of arrays GIVCOL and PERM.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PERM
|
|
*> \verbatim
|
|
*> PERM is INTEGER array,
|
|
*> dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
|
|
*> if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
|
|
*> permutations done on the I-th level of the computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] GIVNUM
|
|
*> \verbatim
|
|
*> GIVNUM is DOUBLE PRECISION array,
|
|
*> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
|
|
*> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
|
|
*> GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
|
|
*> values of Givens rotations performed on the I-th level on
|
|
*> the computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array,
|
|
*> dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
|
|
*> If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
|
|
*> C( I ) contains the C-value of a Givens rotation related to
|
|
*> the right null space of the I-th subproblem.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension ( N ) if
|
|
*> ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
|
|
*> and the I-th subproblem is not square, on exit, S( I )
|
|
*> contains the S-value of a Givens rotation related to
|
|
*> the right null space of the I-th subproblem.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension
|
|
*> (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (7*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = 1, a singular value did not converge
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date June 2017
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Ming Gu and Huan Ren, Computer Science Division, University of
|
|
*> California at Berkeley, USA
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
|
|
$ DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
|
|
$ PERM, GIVNUM, C, S, WORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.7.1) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* June 2017
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
|
|
$ K( * ), PERM( LDGCOL, * )
|
|
DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
|
|
$ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
|
|
$ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
|
|
$ Z( LDU, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
|
|
$ J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
|
|
$ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
|
|
$ NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
|
|
DOUBLE PRECISION ALPHA, BETA
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( SMLSIZ.LT.3 ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDU.LT.( N+SQRE ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDGCOL.LT.N ) THEN
|
|
INFO = -17
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLASDA', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
M = N + SQRE
|
|
*
|
|
* If the input matrix is too small, call DLASDQ to find the SVD.
|
|
*
|
|
IF( N.LE.SMLSIZ ) THEN
|
|
IF( ICOMPQ.EQ.0 ) THEN
|
|
CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
|
|
$ U, LDU, WORK, INFO )
|
|
ELSE
|
|
CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
|
|
$ U, LDU, WORK, INFO )
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Book-keeping and set up the computation tree.
|
|
*
|
|
INODE = 1
|
|
NDIML = INODE + N
|
|
NDIMR = NDIML + N
|
|
IDXQ = NDIMR + N
|
|
IWK = IDXQ + N
|
|
*
|
|
NCC = 0
|
|
NRU = 0
|
|
*
|
|
SMLSZP = SMLSIZ + 1
|
|
VF = 1
|
|
VL = VF + M
|
|
NWORK1 = VL + M
|
|
NWORK2 = NWORK1 + SMLSZP*SMLSZP
|
|
*
|
|
CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
|
|
$ IWORK( NDIMR ), SMLSIZ )
|
|
*
|
|
* for the nodes on bottom level of the tree, solve
|
|
* their subproblems by DLASDQ.
|
|
*
|
|
NDB1 = ( ND+1 ) / 2
|
|
DO 30 I = NDB1, ND
|
|
*
|
|
* IC : center row of each node
|
|
* NL : number of rows of left subproblem
|
|
* NR : number of rows of right subproblem
|
|
* NLF: starting row of the left subproblem
|
|
* NRF: starting row of the right subproblem
|
|
*
|
|
I1 = I - 1
|
|
IC = IWORK( INODE+I1 )
|
|
NL = IWORK( NDIML+I1 )
|
|
NLP1 = NL + 1
|
|
NR = IWORK( NDIMR+I1 )
|
|
NLF = IC - NL
|
|
NRF = IC + 1
|
|
IDXQI = IDXQ + NLF - 2
|
|
VFI = VF + NLF - 1
|
|
VLI = VL + NLF - 1
|
|
SQREI = 1
|
|
IF( ICOMPQ.EQ.0 ) THEN
|
|
CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
|
|
$ SMLSZP )
|
|
CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
|
|
$ E( NLF ), WORK( NWORK1 ), SMLSZP,
|
|
$ WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
|
|
$ WORK( NWORK2 ), INFO )
|
|
ITEMP = NWORK1 + NL*SMLSZP
|
|
CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
|
|
CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
|
|
ELSE
|
|
CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
|
|
CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
|
|
CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
|
|
$ E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
|
|
$ U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
|
|
CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
|
|
CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
DO 10 J = 1, NL
|
|
IWORK( IDXQI+J ) = J
|
|
10 CONTINUE
|
|
IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
|
|
SQREI = 0
|
|
ELSE
|
|
SQREI = 1
|
|
END IF
|
|
IDXQI = IDXQI + NLP1
|
|
VFI = VFI + NLP1
|
|
VLI = VLI + NLP1
|
|
NRP1 = NR + SQREI
|
|
IF( ICOMPQ.EQ.0 ) THEN
|
|
CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
|
|
$ SMLSZP )
|
|
CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
|
|
$ E( NRF ), WORK( NWORK1 ), SMLSZP,
|
|
$ WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
|
|
$ WORK( NWORK2 ), INFO )
|
|
ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
|
|
CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
|
|
CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
|
|
ELSE
|
|
CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
|
|
CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
|
|
CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
|
|
$ E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
|
|
$ U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
|
|
CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
|
|
CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
DO 20 J = 1, NR
|
|
IWORK( IDXQI+J ) = J
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
* Now conquer each subproblem bottom-up.
|
|
*
|
|
J = 2**NLVL
|
|
DO 50 LVL = NLVL, 1, -1
|
|
LVL2 = LVL*2 - 1
|
|
*
|
|
* Find the first node LF and last node LL on
|
|
* the current level LVL.
|
|
*
|
|
IF( LVL.EQ.1 ) THEN
|
|
LF = 1
|
|
LL = 1
|
|
ELSE
|
|
LF = 2**( LVL-1 )
|
|
LL = 2*LF - 1
|
|
END IF
|
|
DO 40 I = LF, LL
|
|
IM1 = I - 1
|
|
IC = IWORK( INODE+IM1 )
|
|
NL = IWORK( NDIML+IM1 )
|
|
NR = IWORK( NDIMR+IM1 )
|
|
NLF = IC - NL
|
|
NRF = IC + 1
|
|
IF( I.EQ.LL ) THEN
|
|
SQREI = SQRE
|
|
ELSE
|
|
SQREI = 1
|
|
END IF
|
|
VFI = VF + NLF - 1
|
|
VLI = VL + NLF - 1
|
|
IDXQI = IDXQ + NLF - 1
|
|
ALPHA = D( IC )
|
|
BETA = E( IC )
|
|
IF( ICOMPQ.EQ.0 ) THEN
|
|
CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
|
|
$ WORK( VFI ), WORK( VLI ), ALPHA, BETA,
|
|
$ IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
|
|
$ LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
|
|
$ K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
|
|
$ IWORK( IWK ), INFO )
|
|
ELSE
|
|
J = J - 1
|
|
CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
|
|
$ WORK( VFI ), WORK( VLI ), ALPHA, BETA,
|
|
$ IWORK( IDXQI ), PERM( NLF, LVL ),
|
|
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
|
|
$ GIVNUM( NLF, LVL2 ), LDU,
|
|
$ POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
|
|
$ DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
|
|
$ C( J ), S( J ), WORK( NWORK1 ),
|
|
$ IWORK( IWK ), INFO )
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLASDA
|
|
*
|
|
END
|