lammps/lib/gpu/lal_base_ellipsoid.cpp

471 lines
16 KiB
C++

/***************************************************************************
base_ellipsoid.cpp
-------------------
W. Michael Brown (ORNL)
Base class for acceleration of ellipsoid potentials
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : Thu May 5 2011
email : brownw@ornl.gov
***************************************************************************/
#include "lal_base_ellipsoid.h"
#include <cstdlib>
using namespace LAMMPS_AL;
#ifdef USE_OPENCL
#include "ellipsoid_nbor_cl.h"
#else
#include "ellipsoid_nbor_ptx.h"
#endif
#define BaseEllipsoidT BaseEllipsoid<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> global_device;
template <class numtyp, class acctyp>
BaseEllipsoidT::BaseEllipsoid() : _compiled(false), _max_bytes(0) {
device=&global_device;
ans=new Answer<numtyp,acctyp>();
nbor=new Neighbor();
}
template <class numtyp, class acctyp>
BaseEllipsoidT::~BaseEllipsoid() {
delete ans;
delete nbor;
}
template <class numtyp, class acctyp>
int BaseEllipsoidT::bytes_per_atom(const int max_nbors) const {
return device->atom.bytes_per_atom()+ans->bytes_per_atom()+
nbor->bytes_per_atom(max_nbors);
}
template <class numtyp, class acctyp>
int BaseEllipsoidT::init_base(const int nlocal, const int nall,
const int max_nbors, const int maxspecial,
const double cell_size, const double gpu_split,
FILE *_screen, const int ntypes, int **h_form,
const char *ellipsoid_program,
const char *lj_program, const bool ellip_sphere) {
screen=_screen;
_ellipsoid_sphere=ellip_sphere;
int gpu_nbor=0;
if (device->gpu_mode()==Device<numtyp,acctyp>::GPU_NEIGH)
gpu_nbor=1;
else if (device->gpu_mode()==Device<numtyp,acctyp>::GPU_HYB_NEIGH)
gpu_nbor=2;
int _gpu_host=0;
int host_nlocal=hd_balancer.first_host_count(nlocal,gpu_split,gpu_nbor);
if (host_nlocal>0)
_gpu_host=1;
_threads_per_atom=device->threads_per_atom();
int success=device->init(*ans,false,true,nlocal,host_nlocal,nall,nbor,
maxspecial,_gpu_host,max_nbors,cell_size,true,
1);
if (success!=0)
return success;
ucl_device=device->gpu;
atom=&device->atom;
_block_size=device->pair_block_size();
compile_kernels(*ucl_device,ellipsoid_program,lj_program,ellip_sphere);
// Initialize host-device load balancer
hd_balancer.init(device,gpu_nbor,gpu_split);
// Initialize timers for the selected GPU
time_lj.init(*ucl_device);
time_nbor1.init(*ucl_device);
time_ellipsoid.init(*ucl_device);
time_nbor2.init(*ucl_device);
time_ellipsoid2.init(*ucl_device);
time_nbor3.init(*ucl_device);
time_ellipsoid3.init(*ucl_device);
time_lj.zero();
time_nbor1.zero();
time_ellipsoid.zero();
time_nbor2.zero();
time_ellipsoid2.zero();
time_nbor3.zero();
time_ellipsoid3.zero();
// See if we want fast GB-sphere or sphere-sphere calculations
_host_form=h_form;
_multiple_forms=false;
for (int i=1; i<ntypes; i++)
for (int j=i; j<ntypes; j++)
if (_host_form[i][j]!=ELLIPSE_ELLIPSE)
_multiple_forms=true;
if (_multiple_forms && host_nlocal>0) {
std::cerr << "Cannot use Gayberne with multiple forms and GPU neighbor.\n";
exit(1);
}
if (_multiple_forms)
ans->dev_ans.zero();
// Memory for ilist ordered by particle type
if (host_olist.alloc(nbor->max_atoms(),*ucl_device)==UCL_SUCCESS)
return 0;
else return -3;
_max_an_bytes=ans->gpu_bytes()+nbor->gpu_bytes();
return 0;
}
template <class numtyp, class acctyp>
void BaseEllipsoidT::estimate_gpu_overhead() {
device->estimate_gpu_overhead(2,_gpu_overhead,_driver_overhead);
}
template <class numtyp, class acctyp>
void BaseEllipsoidT::clear_base() {
// Output any timing information
output_times();
host_olist.clear();
if (_compiled) {
k_nbor_fast.clear();
k_nbor.clear();
k_ellipsoid.clear();
k_ellipsoid_sphere.clear();
k_sphere_ellipsoid.clear();
k_lj_fast.clear();
k_lj.clear();
delete nbor_program;
delete ellipsoid_program;
delete lj_program;
_compiled=false;
}
time_nbor1.clear();
time_ellipsoid.clear();
time_nbor2.clear();
time_ellipsoid2.clear();
time_nbor3.clear();
time_ellipsoid3.clear();
time_lj.clear();
hd_balancer.clear();
nbor->clear();
ans->clear();
device->clear();
}
template <class numtyp, class acctyp>
void BaseEllipsoidT::output_times() {
// Output any timing information
acc_timers();
double single[10], times[10];
single[0]=atom->transfer_time()+ans->transfer_time();
single[1]=nbor->time_nbor.total_seconds()+nbor->time_hybrid1.total_seconds()+
nbor->time_hybrid2.total_seconds();
single[2]=time_nbor1.total_seconds()+time_nbor2.total_seconds()+
time_nbor3.total_seconds()+nbor->time_nbor.total_seconds();
single[3]=time_ellipsoid.total_seconds()+time_ellipsoid2.total_seconds()+
time_ellipsoid3.total_seconds();
if (_multiple_forms)
single[4]=time_lj.total_seconds();
else
single[4]=0;
single[5]=atom->cast_time()+ans->cast_time();
single[6]=_gpu_overhead;
single[7]=_driver_overhead;
single[8]=ans->cpu_idle_time();
single[9]=nbor->bin_time();
MPI_Reduce(single,times,10,MPI_DOUBLE,MPI_SUM,0,device->replica());
double avg_split=hd_balancer.all_avg_split();
_max_bytes+=atom->max_gpu_bytes();
double mpi_max_bytes;
MPI_Reduce(&_max_bytes,&mpi_max_bytes,1,MPI_DOUBLE,MPI_MAX,0,
device->replica());
double max_mb=mpi_max_bytes/(1024*1024);
if (device->replica_me()==0)
if (screen && times[5]>0.0) {
int replica_size=device->replica_size();
fprintf(screen,"\n\n-------------------------------------");
fprintf(screen,"--------------------------------\n");
fprintf(screen," GPU Time Info (average): ");
fprintf(screen,"\n-------------------------------------");
fprintf(screen,"--------------------------------\n");
if (device->procs_per_gpu()==1) {
fprintf(screen,"Data Transfer: %.4f s.\n",times[0]/replica_size);
fprintf(screen,"Data Cast/Pack: %.4f s.\n",times[5]/replica_size);
fprintf(screen,"Neighbor copy: %.4f s.\n",times[1]/replica_size);
if (nbor->gpu_nbor()>0)
fprintf(screen,"Neighbor build: %.4f s.\n",times[2]/replica_size);
else
fprintf(screen,"Neighbor unpack: %.4f s.\n",times[2]/replica_size);
fprintf(screen,"Force calc: %.4f s.\n",times[3]/replica_size);
fprintf(screen,"LJ calc: %.4f s.\n",times[4]/replica_size);
}
if (nbor->gpu_nbor()==2)
fprintf(screen,"Neighbor (CPU): %.4f s.\n",times[9]/replica_size);
fprintf(screen,"GPU Overhead: %.4f s.\n",times[6]/replica_size);
fprintf(screen,"Average split: %.4f.\n",avg_split);
fprintf(screen,"Threads / atom: %d.\n",_threads_per_atom);
fprintf(screen,"Max Mem / Proc: %.2f MB.\n",max_mb);
fprintf(screen,"CPU Driver_Time: %.4f s.\n",times[7]/replica_size);
fprintf(screen,"CPU Idle_Time: %.4f s.\n",times[8]/replica_size);
fprintf(screen,"-------------------------------------");
fprintf(screen,"--------------------------------\n\n");
}
_max_bytes=0.0;
}
// ---------------------------------------------------------------------------
// Pack neighbors to limit thread divergence for lj-lj and ellipse
// ---------------------------------------------------------------------------
template<class numtyp, class acctyp>
void BaseEllipsoidT::pack_nbors(const int GX, const int BX, const int start,
const int inum, const int form_low,
const int form_high, const bool shared_types,
int ntypes) {
int stride=nbor->nbor_pitch();
if (shared_types) {
k_nbor_fast.set_size(GX,BX);
k_nbor_fast.run(&atom->dev_x.begin(), &cut_form.begin(),
&nbor->dev_nbor.begin(), &stride, &start, &inum,
&nbor->dev_packed.begin(), &form_low, &form_high);
} else {
k_nbor.set_size(GX,BX);
k_nbor.run(&atom->dev_x.begin(), &cut_form.begin(), &ntypes,
&nbor->dev_nbor.begin(), &stride, &start, &inum,
&nbor->dev_packed.begin(), &form_low, &form_high);
}
}
// ---------------------------------------------------------------------------
// Copy neighbor list from host
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void BaseEllipsoidT::reset_nbors(const int nall, const int inum,
const int osize, int *ilist,
int *numj, int *type, int **firstneigh,
bool &success) {
success=true;
int mn=nbor->max_nbor_loop(osize,numj,ilist);
resize_atom(nall,success);
resize_local(inum,0,mn,osize,success);
if (!success)
return;
if (_multiple_forms) {
int p=0;
for (int i=0; i<osize; i++) {
int itype=type[ilist[i]];
if (_host_form[itype][itype]==ELLIPSE_ELLIPSE) {
host_olist[p]=ilist[i];
p++;
}
}
_max_last_ellipse=p;
_last_ellipse=std::min(inum,_max_last_ellipse);
for (int i=0; i<osize; i++) {
int itype=type[ilist[i]];
if (_host_form[itype][itype]!=ELLIPSE_ELLIPSE) {
host_olist[p]=ilist[i];
p++;
}
}
nbor->get_host(inum,host_olist.begin(),numj,firstneigh,block_size());
nbor->copy_unpacked(inum,mn);
return;
}
_last_ellipse=inum;
_max_last_ellipse=inum;
nbor->get_host(inum,ilist,numj,firstneigh,block_size());
nbor->copy_unpacked(inum,mn);
double bytes=ans->gpu_bytes()+nbor->gpu_bytes();
if (bytes>_max_an_bytes)
_max_an_bytes=bytes;
}
// ---------------------------------------------------------------------------
// Build neighbor list on device
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
inline void BaseEllipsoidT::build_nbor_list(const int inum, const int host_inum,
const int nall, double **host_x,
int *host_type, double *sublo,
double *subhi, int *tag,
int **nspecial, int **special,
bool &success) {
success=true;
resize_atom(nall,success);
resize_local(inum,host_inum,nbor->max_nbors(),0,success);
if (!success)
return;
atom->cast_copy_x(host_x,host_type);
int mn;
nbor->build_nbor_list(host_x, inum, host_inum, nall, *atom, sublo, subhi, tag,
nspecial, special, success, mn);
nbor->copy_unpacked(inum,mn);
_last_ellipse=inum;
_max_last_ellipse=inum;
double bytes=ans->gpu_bytes()+nbor->gpu_bytes();
if (bytes>_max_an_bytes)
_max_an_bytes=bytes;
}
// ---------------------------------------------------------------------------
// Copy nbor list from host if necessary and then calculate forces, virials,..
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int* BaseEllipsoidT::compute(const int f_ago, const int inum_full,
const int nall, double **host_x, int *host_type,
int *ilist, int *numj, int **firstneigh,
const bool eflag, const bool vflag,
const bool eatom, const bool vatom,
int &host_start, const double cpu_time,
bool &success, double **host_quat) {
acc_timers();
if (inum_full==0) {
host_start=0;
zero_timers();
return NULL;
}
int ago=hd_balancer.ago_first(f_ago);
int inum=hd_balancer.balance(ago,inum_full,cpu_time);
ans->inum(inum);
_last_ellipse=std::min(inum,_max_last_ellipse);
host_start=inum;
if (ago==0) {
reset_nbors(nall, inum, inum_full, ilist, numj, host_type, firstneigh,
success);
if (!success)
return NULL;
}
int *list;
if (_multiple_forms)
list=host_olist.begin();
else
list=ilist;
atom->cast_x_data(host_x,host_type);
atom->cast_quat_data(host_quat[0]);
hd_balancer.start_timer();
atom->add_x_data(host_x,host_type);
atom->add_quat_data();
loop(eflag,vflag);
ans->copy_answers(eflag,vflag,eatom,vatom,list);
device->add_ans_object(ans);
hd_balancer.stop_timer();
return list;
}
// ---------------------------------------------------------------------------
// Reneighbor on GPU if necessary and then compute forces, virials, energies
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int** BaseEllipsoidT::compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, double *sublo,
double *subhi, int *tag, int **nspecial,
int **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom,
int &host_start, int **ilist, int **jnum,
const double cpu_time, bool &success,
double **host_quat) {
acc_timers();
if (inum_full==0) {
host_start=0;
zero_timers();
return NULL;
}
hd_balancer.balance(cpu_time);
int inum=hd_balancer.get_gpu_count(ago,inum_full);
ans->inum(inum);
_last_ellipse=std::min(inum,_max_last_ellipse);
host_start=inum;
// Build neighbor list on GPU if necessary
if (ago==0) {
build_nbor_list(inum, inum_full-inum, nall, host_x, host_type,
sublo, subhi, tag, nspecial, special, success);
if (!success)
return NULL;
atom->cast_quat_data(host_quat[0]);
hd_balancer.start_timer();
} else {
atom->cast_x_data(host_x,host_type);
atom->cast_quat_data(host_quat[0]);
hd_balancer.start_timer();
atom->add_x_data(host_x,host_type);
}
atom->add_quat_data();
*ilist=nbor->host_ilist.begin();
*jnum=nbor->host_acc.begin();
loop(eflag,vflag);
ans->copy_answers(eflag,vflag,eatom,vatom);
device->add_ans_object(ans);
hd_balancer.stop_timer();
return nbor->host_jlist.begin()-host_start;
}
template <class numtyp, class acctyp>
double BaseEllipsoidT::host_memory_usage_base() const {
return device->atom.host_memory_usage()+nbor->host_memory_usage()+
4*sizeof(numtyp)+sizeof(BaseEllipsoid<numtyp,acctyp>);
}
template <class numtyp, class acctyp>
void BaseEllipsoidT::compile_kernels(UCL_Device &dev,
const char *ellipsoid_string,
const char *lj_string, const bool e_s) {
if (_compiled)
return;
std::string flags="-cl-fast-relaxed-math -cl-mad-enable "+
std::string(OCL_PRECISION_COMPILE)+" -D"+
std::string(OCL_VENDOR);
nbor_program=new UCL_Program(dev);
nbor_program->load_string(ellipsoid_nbor,flags.c_str());
k_nbor_fast.set_function(*nbor_program,"kernel_nbor_fast");
k_nbor.set_function(*nbor_program,"kernel_nbor");
ellipsoid_program=new UCL_Program(dev);
ellipsoid_program->load_string(ellipsoid_string,flags.c_str());
k_ellipsoid.set_function(*ellipsoid_program,"kernel_ellipsoid");
lj_program=new UCL_Program(dev);
lj_program->load_string(lj_string,flags.c_str());
k_sphere_ellipsoid.set_function(*lj_program,"kernel_sphere_ellipsoid");
k_lj_fast.set_function(*lj_program,"kernel_lj_fast");
k_lj.set_function(*lj_program,"kernel_lj");
if (e_s)
k_ellipsoid_sphere.set_function(*lj_program,"kernel_ellipsoid_sphere");
_compiled=true;
}
template class BaseEllipsoid<PRECISION,ACC_PRECISION>;