lammps/doc/compute_gyration.txt

64 lines
1.8 KiB
Plaintext

"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute gyration command :h3
[Syntax:]
compute ID group-ID gyration :pre
ID, group-ID are documented in "compute"_compute.html command
gyration = style name of this compute command :ul
[Examples:]
compute 1 molecule gyration :pre
[Description:]
Define a computation that calculates the radius of gyration Rg of the
group of atoms, including all effects due to atoms passing thru
periodic boundaries.
Rg is a measure of the size of the group of atoms, and is computed by
this formula
:c,image(Eqs/compute_gyration.jpg)
where M is the total mass of the group, Rcm is the center-of-mass
position of the group, and the sum is over all atoms in the group.
IMPORTANT NOTE: The coordinates of an atom contribute to Rg in
"unwrapped" form, by using the image flags associated with each atom.
See the "dump custom"_dump.html command for a discussion of
"unwrapped" coordinates. See the Atoms section of the
"read_data"_read_data.html command for a discussion of image flags and
how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the "set
image"_set.html command.
[Output info:]
This compute calculates a global scalar (Rg). This value can be used
by any command that uses a global scalar value from a compute as
input. See "this section"_Section_howto.html#4_15 for an overview of
LAMMPS output options.
The scalar value calculated by this compute is "intensive", meaning it
is independent of the number of atoms in the simulation.
The scalar value will be in distance "units"_units.html.
[Restrictions:] none
[Related commands:]
"compute gyration/molecule"_compute_gyration_molecule.html
[Default:] none