forked from lijiext/lammps
283 lines
7.0 KiB
Plaintext
283 lines
7.0 KiB
Plaintext
LAMMPS data file via write_data, version 24 Oct 2015-ICMS, timestep = 44
|
|
|
|
23 atoms
|
|
7 atom types
|
|
23 bonds
|
|
9 bond types
|
|
39 angles
|
|
16 angle types
|
|
54 dihedrals
|
|
19 dihedral types
|
|
7 impropers
|
|
3 improper types
|
|
|
|
-9.8334503200000001e-01 4.1194155219999997e+00 xlo xhi
|
|
-6.4800081250000003e+00 2.8460192680000000e+00 ylo yhi
|
|
-3.2154743670000001e+00 1.4167015549999999e+00 zlo zhi
|
|
|
|
Masses
|
|
|
|
1 14.0067
|
|
2 1.00797
|
|
3 12.0112
|
|
4 1.00797
|
|
5 12.0112
|
|
6 15.9994
|
|
7 12.0112
|
|
|
|
Pair Coeffs # lj/cut/coul/cut
|
|
|
|
1 0.167 3.50123
|
|
2 0 0
|
|
3 0.16 3.47451
|
|
4 0.038 2.44997
|
|
5 0.148 3.61705
|
|
6 0.228 2.85978
|
|
7 0.148 3.61705
|
|
|
|
Bond Coeffs # harmonic
|
|
|
|
1 356.599 1.47
|
|
2 457.459 1.026
|
|
3 340.618 1.105
|
|
4 283.092 1.52
|
|
5 322.716 1.526
|
|
6 540 1.25
|
|
7 283.092 1.51
|
|
8 480 1.34
|
|
9 363.416 1.08
|
|
|
|
Angle Coeffs # harmonic
|
|
|
|
1 41.6 110
|
|
2 36 105.5
|
|
3 57.3 109.5
|
|
4 50 109.5
|
|
5 50 109.5
|
|
6 45 109.5
|
|
7 44.4 110
|
|
8 46.6 110.5
|
|
9 68 120
|
|
10 145 123
|
|
11 46.6 110.5
|
|
12 39.5 106.4
|
|
13 44.4 110
|
|
14 44.2 120
|
|
15 90 120
|
|
16 37 120
|
|
|
|
Dihedral Coeffs # harmonic
|
|
|
|
1 0.0889 1 3
|
|
2 0.0889 1 3
|
|
3 0.0889 1 3
|
|
4 0 1 0
|
|
5 0 1 0
|
|
6 0 1 0
|
|
7 0.1581 1 3
|
|
8 0.1581 1 3
|
|
9 0.1581 1 3
|
|
10 0.1581 1 3
|
|
11 0.1581 1 3
|
|
12 0.1581 1 3
|
|
13 0 1 2
|
|
14 0 1 2
|
|
15 3 -1 2
|
|
16 3 -1 2
|
|
17 3 -1 2
|
|
18 3 -1 2
|
|
19 3 -1 2
|
|
|
|
Improper Coeffs # cvff
|
|
|
|
1 11.6 -1 2
|
|
2 0.37 -1 2
|
|
3 0.37 -1 2
|
|
|
|
Atoms # full
|
|
|
|
1 1 1 -4.4999999999999998e-02 3.8261840200485547e-01 5.7568175596741739e-02 4.2801763244488256e-02 0 0 0
|
|
2 1 2 2.8000000000000003e-01 -3.6005159659383584e-01 -5.6546886220350190e-01 2.9537901651980475e-02 0 0 0
|
|
3 1 2 2.8000000000000003e-01 3.0100551103530615e-01 8.4002757097142589e-01 6.6621710081984697e-01 0 0 0
|
|
4 1 2 2.8000000000000003e-01 3.2665828846824313e-01 9.9583350647735369e-01 -2.6821945552159543e-01 0 0 0
|
|
5 1 3 -7.8000000000000000e-02 1.8174540108895378e+00 -4.1007465970234902e-01 2.3545687525165123e-04 0 0 0
|
|
6 1 4 5.2999999999999999e-02 2.1255863666810177e+00 -8.4945007572399811e-01 9.4150438263016889e-01 0 0 0
|
|
7 1 5 2.9740000000000000e-01 1.5936523220335395e+00 9.9181356345514471e-01 2.9065680454745447e-03 0 0 0
|
|
8 1 6 -5.3369999999999995e-01 2.4168434404751551e+00 1.8906151285859232e+00 -4.4042415883673421e-02 0 0 0
|
|
9 1 6 -5.3369999999999995e-01 3.2665828846824319e-01 9.9583350647735380e-01 -2.6821945552159543e-01 0 0 0
|
|
10 1 3 -1.0600000000000000e-01 2.2708723215936835e+00 -8.4870387460596119e-01 -1.3419681155517431e+00 0 0 0
|
|
11 1 4 5.2999999999999999e-02 1.8402581484948779e+00 -2.1026565000174635e-01 -2.1654506176791681e+00 0 0 0
|
|
12 1 4 5.2999999999999999e-02 3.3836324069843760e+00 -7.2303834518187504e-01 -1.3997057234448769e+00 0 0 0
|
|
13 1 7 0.0000000000000000e+00 1.8874447010064574e+00 -2.2514550380851373e+00 -1.4702072252230289e+00 0 0 0
|
|
14 1 7 -1.3053000000000001e-01 7.6676774289787297e-01 -2.6507388229886399e+00 -2.1197704322391493e+00 0 0 0
|
|
15 1 4 1.3053000000000001e-01 1.3857431374227785e-01 -1.9118939376823751e+00 -2.5906999609283408e+00 0 0 0
|
|
16 1 7 -1.3053000000000001e-01 4.7076429192482738e-01 -3.9448181151047566e+00 -2.1899898997699121e+00 0 0 0
|
|
17 1 4 1.3053000000000001e-01 -3.9784223514932859e-01 -4.2534808244922537e+00 -2.7214259342391154e+00 0 0 0
|
|
18 1 7 -1.3053000000000001e-01 1.2806541578230615e+00 -4.8335445220038871e+00 -1.6231739104873204e+00 0 0 0
|
|
19 1 4 1.3053000000000001e-01 1.0467859574258771e+00 -5.9371331003482526e+00 -1.7136660236221883e+00 0 0 0
|
|
20 1 7 -1.3053000000000001e-01 2.3739130431542237e+00 -4.4573764826053450e+00 -9.5574007263044469e-01 0 0 0
|
|
21 1 4 1.3053000000000001e-01 3.0247174456345798e+00 -5.1702484972417242e+00 -5.0912236698220592e-01 0 0 0
|
|
22 1 7 -1.3053000000000001e-01 2.6589619129160513e+00 -3.1716801149521614e+00 -8.5860168874135101e-01 0 0 0
|
|
23 1 4 1.3053000000000001e-01 3.5283481490890991e+00 -2.8336668626399786e+00 -3.1197011380150330e-01 0 0 0
|
|
|
|
Velocities
|
|
|
|
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
|
|
Bonds
|
|
|
|
1 1 1 5
|
|
2 2 1 2
|
|
3 2 1 3
|
|
4 2 1 4
|
|
5 3 5 6
|
|
6 4 5 7
|
|
7 5 5 10
|
|
8 6 7 9
|
|
9 6 7 8
|
|
10 3 10 11
|
|
11 3 10 12
|
|
12 7 10 13
|
|
13 8 13 14
|
|
14 8 13 22
|
|
15 8 14 16
|
|
16 9 15 14
|
|
17 8 16 18
|
|
18 9 17 16
|
|
19 8 18 20
|
|
20 9 19 18
|
|
21 8 20 22
|
|
22 9 21 20
|
|
23 9 23 22
|
|
|
|
Angles
|
|
|
|
1 1 2 1 5
|
|
2 1 3 1 5
|
|
3 1 4 1 5
|
|
4 2 2 1 3
|
|
5 2 2 1 4
|
|
6 2 3 1 4
|
|
7 3 1 5 6
|
|
8 4 1 5 7
|
|
9 5 1 5 10
|
|
10 6 6 5 7
|
|
11 7 10 5 6
|
|
12 8 10 5 7
|
|
13 9 5 7 9
|
|
14 9 5 7 8
|
|
15 10 9 7 8
|
|
16 7 5 10 11
|
|
17 7 5 10 12
|
|
18 11 5 10 13
|
|
19 12 11 10 12
|
|
20 13 11 10 13
|
|
21 13 12 10 13
|
|
22 14 10 13 14
|
|
23 14 10 13 22
|
|
24 15 14 13 22
|
|
25 16 15 14 13
|
|
26 15 13 14 16
|
|
27 16 15 14 16
|
|
28 16 17 16 14
|
|
29 15 14 16 18
|
|
30 16 17 16 18
|
|
31 16 19 18 16
|
|
32 15 16 18 20
|
|
33 16 19 18 20
|
|
34 16 21 20 18
|
|
35 15 18 20 22
|
|
36 16 21 20 22
|
|
37 16 23 22 20
|
|
38 15 20 22 13
|
|
39 16 23 22 13
|
|
|
|
Dihedrals
|
|
|
|
1 1 2 1 5 6
|
|
2 2 2 1 5 7
|
|
3 3 2 1 5 10
|
|
4 1 3 1 5 6
|
|
5 2 3 1 5 7
|
|
6 3 3 1 5 10
|
|
7 1 4 1 5 6
|
|
8 2 4 1 5 7
|
|
9 3 4 1 5 10
|
|
10 4 1 5 7 9
|
|
11 4 1 5 7 8
|
|
12 5 6 5 7 9
|
|
13 5 6 5 7 8
|
|
14 6 10 5 7 9
|
|
15 6 10 5 7 8
|
|
16 7 1 5 10 11
|
|
17 7 1 5 10 12
|
|
18 8 1 5 10 13
|
|
19 9 6 5 10 11
|
|
20 9 6 5 10 12
|
|
21 10 6 5 10 13
|
|
22 12 7 5 10 13
|
|
23 11 11 10 5 7
|
|
24 11 12 10 5 7
|
|
25 13 5 10 13 14
|
|
26 13 5 10 13 22
|
|
27 14 11 10 13 14
|
|
28 14 11 10 13 22
|
|
29 14 12 10 13 14
|
|
30 14 12 10 13 22
|
|
31 15 10 13 14 15
|
|
32 16 10 13 14 16
|
|
33 18 22 13 14 16
|
|
34 16 10 13 22 20
|
|
35 15 10 13 22 23
|
|
36 18 14 13 22 20
|
|
37 17 15 14 13 22
|
|
38 18 13 14 16 18
|
|
39 19 15 14 16 17
|
|
40 17 15 14 16 18
|
|
41 17 17 16 14 13
|
|
42 18 14 16 18 20
|
|
43 19 17 16 18 19
|
|
44 17 17 16 18 20
|
|
45 17 19 18 16 14
|
|
46 18 16 18 20 22
|
|
47 19 19 18 20 21
|
|
48 17 19 18 20 22
|
|
49 17 21 20 18 16
|
|
50 18 18 20 22 13
|
|
51 19 21 20 22 23
|
|
52 17 21 20 22 13
|
|
53 17 23 22 13 14
|
|
54 17 23 22 20 18
|
|
|
|
Impropers
|
|
|
|
1 1 5 7 9 8
|
|
2 2 10 13 14 22
|
|
3 3 15 14 13 16
|
|
4 3 17 16 14 18
|
|
5 3 19 18 16 20
|
|
6 3 21 20 18 22
|
|
7 3 23 22 20 13
|