lammps/tools/msi2lmp/test/reference/phen3_cff97-class1.data2

283 lines
7.0 KiB
Plaintext

LAMMPS data file via write_data, version 24 Oct 2015-ICMS, timestep = 44
23 atoms
7 atom types
23 bonds
9 bond types
39 angles
16 angle types
54 dihedrals
19 dihedral types
7 impropers
3 improper types
-9.8334503200000001e-01 4.1194155219999997e+00 xlo xhi
-6.4800081250000003e+00 2.8460192680000000e+00 ylo yhi
-3.2154743670000001e+00 1.4167015549999999e+00 zlo zhi
Masses
1 14.0067
2 1.00797
3 12.0112
4 1.00797
5 12.0112
6 15.9994
7 12.0112
Pair Coeffs # lj/cut/coul/cut
1 0.167 3.50123
2 0 0
3 0.16 3.47451
4 0.038 2.44997
5 0.148 3.61705
6 0.228 2.85978
7 0.148 3.61705
Bond Coeffs # harmonic
1 356.599 1.47
2 457.459 1.026
3 340.618 1.105
4 283.092 1.52
5 322.716 1.526
6 540 1.25
7 283.092 1.51
8 480 1.34
9 363.416 1.08
Angle Coeffs # harmonic
1 41.6 110
2 36 105.5
3 57.3 109.5
4 50 109.5
5 50 109.5
6 45 109.5
7 44.4 110
8 46.6 110.5
9 68 120
10 145 123
11 46.6 110.5
12 39.5 106.4
13 44.4 110
14 44.2 120
15 90 120
16 37 120
Dihedral Coeffs # harmonic
1 0.0889 1 3
2 0.0889 1 3
3 0.0889 1 3
4 0 1 0
5 0 1 0
6 0 1 0
7 0.1581 1 3
8 0.1581 1 3
9 0.1581 1 3
10 0.1581 1 3
11 0.1581 1 3
12 0.1581 1 3
13 0 1 2
14 0 1 2
15 3 -1 2
16 3 -1 2
17 3 -1 2
18 3 -1 2
19 3 -1 2
Improper Coeffs # cvff
1 11.6 -1 2
2 0.37 -1 2
3 0.37 -1 2
Atoms # full
1 1 1 -4.4999999999999998e-02 3.8261840200485547e-01 5.7568175596741739e-02 4.2801763244488256e-02 0 0 0
2 1 2 2.8000000000000003e-01 -3.6005159659383584e-01 -5.6546886220350190e-01 2.9537901651980475e-02 0 0 0
3 1 2 2.8000000000000003e-01 3.0100551103530615e-01 8.4002757097142589e-01 6.6621710081984697e-01 0 0 0
4 1 2 2.8000000000000003e-01 3.2665828846824313e-01 9.9583350647735369e-01 -2.6821945552159543e-01 0 0 0
5 1 3 -7.8000000000000000e-02 1.8174540108895378e+00 -4.1007465970234902e-01 2.3545687525165123e-04 0 0 0
6 1 4 5.2999999999999999e-02 2.1255863666810177e+00 -8.4945007572399811e-01 9.4150438263016889e-01 0 0 0
7 1 5 2.9740000000000000e-01 1.5936523220335395e+00 9.9181356345514471e-01 2.9065680454745447e-03 0 0 0
8 1 6 -5.3369999999999995e-01 2.4168434404751551e+00 1.8906151285859232e+00 -4.4042415883673421e-02 0 0 0
9 1 6 -5.3369999999999995e-01 3.2665828846824319e-01 9.9583350647735380e-01 -2.6821945552159543e-01 0 0 0
10 1 3 -1.0600000000000000e-01 2.2708723215936835e+00 -8.4870387460596119e-01 -1.3419681155517431e+00 0 0 0
11 1 4 5.2999999999999999e-02 1.8402581484948779e+00 -2.1026565000174635e-01 -2.1654506176791681e+00 0 0 0
12 1 4 5.2999999999999999e-02 3.3836324069843760e+00 -7.2303834518187504e-01 -1.3997057234448769e+00 0 0 0
13 1 7 0.0000000000000000e+00 1.8874447010064574e+00 -2.2514550380851373e+00 -1.4702072252230289e+00 0 0 0
14 1 7 -1.3053000000000001e-01 7.6676774289787297e-01 -2.6507388229886399e+00 -2.1197704322391493e+00 0 0 0
15 1 4 1.3053000000000001e-01 1.3857431374227785e-01 -1.9118939376823751e+00 -2.5906999609283408e+00 0 0 0
16 1 7 -1.3053000000000001e-01 4.7076429192482738e-01 -3.9448181151047566e+00 -2.1899898997699121e+00 0 0 0
17 1 4 1.3053000000000001e-01 -3.9784223514932859e-01 -4.2534808244922537e+00 -2.7214259342391154e+00 0 0 0
18 1 7 -1.3053000000000001e-01 1.2806541578230615e+00 -4.8335445220038871e+00 -1.6231739104873204e+00 0 0 0
19 1 4 1.3053000000000001e-01 1.0467859574258771e+00 -5.9371331003482526e+00 -1.7136660236221883e+00 0 0 0
20 1 7 -1.3053000000000001e-01 2.3739130431542237e+00 -4.4573764826053450e+00 -9.5574007263044469e-01 0 0 0
21 1 4 1.3053000000000001e-01 3.0247174456345798e+00 -5.1702484972417242e+00 -5.0912236698220592e-01 0 0 0
22 1 7 -1.3053000000000001e-01 2.6589619129160513e+00 -3.1716801149521614e+00 -8.5860168874135101e-01 0 0 0
23 1 4 1.3053000000000001e-01 3.5283481490890991e+00 -2.8336668626399786e+00 -3.1197011380150330e-01 0 0 0
Velocities
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
Bonds
1 1 1 5
2 2 1 2
3 2 1 3
4 2 1 4
5 3 5 6
6 4 5 7
7 5 5 10
8 6 7 9
9 6 7 8
10 3 10 11
11 3 10 12
12 7 10 13
13 8 13 14
14 8 13 22
15 8 14 16
16 9 15 14
17 8 16 18
18 9 17 16
19 8 18 20
20 9 19 18
21 8 20 22
22 9 21 20
23 9 23 22
Angles
1 1 2 1 5
2 1 3 1 5
3 1 4 1 5
4 2 2 1 3
5 2 2 1 4
6 2 3 1 4
7 3 1 5 6
8 4 1 5 7
9 5 1 5 10
10 6 6 5 7
11 7 10 5 6
12 8 10 5 7
13 9 5 7 9
14 9 5 7 8
15 10 9 7 8
16 7 5 10 11
17 7 5 10 12
18 11 5 10 13
19 12 11 10 12
20 13 11 10 13
21 13 12 10 13
22 14 10 13 14
23 14 10 13 22
24 15 14 13 22
25 16 15 14 13
26 15 13 14 16
27 16 15 14 16
28 16 17 16 14
29 15 14 16 18
30 16 17 16 18
31 16 19 18 16
32 15 16 18 20
33 16 19 18 20
34 16 21 20 18
35 15 18 20 22
36 16 21 20 22
37 16 23 22 20
38 15 20 22 13
39 16 23 22 13
Dihedrals
1 1 2 1 5 6
2 2 2 1 5 7
3 3 2 1 5 10
4 1 3 1 5 6
5 2 3 1 5 7
6 3 3 1 5 10
7 1 4 1 5 6
8 2 4 1 5 7
9 3 4 1 5 10
10 4 1 5 7 9
11 4 1 5 7 8
12 5 6 5 7 9
13 5 6 5 7 8
14 6 10 5 7 9
15 6 10 5 7 8
16 7 1 5 10 11
17 7 1 5 10 12
18 8 1 5 10 13
19 9 6 5 10 11
20 9 6 5 10 12
21 10 6 5 10 13
22 12 7 5 10 13
23 11 11 10 5 7
24 11 12 10 5 7
25 13 5 10 13 14
26 13 5 10 13 22
27 14 11 10 13 14
28 14 11 10 13 22
29 14 12 10 13 14
30 14 12 10 13 22
31 15 10 13 14 15
32 16 10 13 14 16
33 18 22 13 14 16
34 16 10 13 22 20
35 15 10 13 22 23
36 18 14 13 22 20
37 17 15 14 13 22
38 18 13 14 16 18
39 19 15 14 16 17
40 17 15 14 16 18
41 17 17 16 14 13
42 18 14 16 18 20
43 19 17 16 18 19
44 17 17 16 18 20
45 17 19 18 16 14
46 18 16 18 20 22
47 19 19 18 20 21
48 17 19 18 20 22
49 17 21 20 18 16
50 18 18 20 22 13
51 19 21 20 22 23
52 17 21 20 22 13
53 17 23 22 13 14
54 17 23 22 20 18
Impropers
1 1 5 7 9 8
2 2 10 13 14 22
3 3 15 14 13 16
4 3 17 16 14 18
5 3 19 18 16 20
6 3 21 20 18 22
7 3 23 22 20 13