lammps/lib/linalg/dsyr2.f

299 lines
8.4 KiB
Fortran

*> \brief \b DSYR2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* .. Scalar Arguments ..
* DOUBLE PRECISION ALPHA
* INTEGER INCX,INCY,LDA,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSYR2 performs the symmetric rank 2 operation
*>
*> A := alpha*x*y**T + alpha*y*x**T + A,
*>
*> where alpha is a scalar, x and y are n element vectors and A is an n
*> by n symmetric matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is DOUBLE PRECISION.
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*> Y is DOUBLE PRECISION array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension ( LDA, N )
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array A must contain the upper
*> triangular part of the symmetric matrix and the strictly
*> lower triangular part of A is not referenced. On exit, the
*> upper triangular part of the array A is overwritten by the
*> upper triangular part of the updated matrix.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array A must contain the lower
*> triangular part of the symmetric matrix and the strictly
*> upper triangular part of A is not referenced. On exit, the
*> lower triangular part of the array A is overwritten by the
*> lower triangular part of the updated matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, n ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_blas_level2
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* -- Reference BLAS level2 routine (version 3.7.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DSYR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF (LSAME(UPLO,'U')) THEN
*
* Form A when A is stored in the upper triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
DO 10 I = 1,J
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
10 CONTINUE
END IF
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = KX
IY = KY
DO 30 I = 1,J
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in the lower triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
DO 50 I = J,N
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
50 CONTINUE
END IF
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = JX
IY = JY
DO 70 I = J,N
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of DSYR2 .
*
END