lammps/lib/gpu/lal_tersoff_mod.cpp

332 lines
11 KiB
C++

/***************************************************************************
tersoff_mod.cpp
-------------------
Trung Dac Nguyen
Class for acceleration of the tersoff pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : ndactrung@gmail.com
***************************************************************************/
#if defined(USE_OPENCL)
#include "tersoff_mod_cl.h"
#elif defined(USE_CUDART)
const char *tersoff_mod=0;
#else
#include "tersoff_mod_cubin.h"
#endif
#include "lal_tersoff_mod.h"
#include <cassert>
namespace LAMMPS_AL {
#define TersoffMT TersoffMod<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
TersoffMT::TersoffMod() : BaseThree<numtyp,acctyp>(), _allocated(false) {
}
template <class numtyp, class acctyp>
TersoffMT::~TersoffMod() {
clear();
}
template <class numtyp, class acctyp>
int TersoffMT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int TersoffMT::init(const int ntypes, const int nlocal, const int nall, const int max_nbors,
const double cell_size, const double gpu_split, FILE *_screen,
int* host_map, const int nelements, int*** host_elem2param, const int nparams,
const double* lam1, const double* lam2, const double* lam3,const double* powermint,
const double* biga, const double* bigb, const double* bigr, const double* bigd,
const double* c1, const double* c2, const double* c3, const double* c4,
const double* c5, const double* h, const double* beta, const double* powern,
const double* powern_del, const double* ca1, const double* host_cutsq)
{
int success;
success=this->init_three(nlocal,nall,max_nbors,0,cell_size,gpu_split,
_screen,tersoff_mod,"k_tersoff_mod_repulsive",
"k_tersoff_mod_three_center", "k_tersoff_mod_three_end",
"k_tersoff_mod_short_nbor");
if (success!=0)
return success;
int ef_nall=nall;
if (ef_nall==0)
ef_nall=2000;
_zetaij.alloc(ef_nall*max_nbors,*(this->ucl_device),UCL_READ_WRITE);
k_zeta.set_function(*(this->pair_program),"k_tersoff_mod_zeta");
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
lj_types=max_shared_types;
shared_types=true;
}
_lj_types=lj_types;
_nparams = nparams;
_nelements = nelements;
UCL_H_Vec<numtyp4> dview(nparams,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<nparams; i++) {
dview[i].x=(numtyp)0;
dview[i].y=(numtyp)0;
dview[i].z=(numtyp)0;
dview[i].w=(numtyp)0;
}
// pack coefficients into arrays
ts1.alloc(nparams,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<nparams; i++) {
dview[i].x=static_cast<numtyp>(lam1[i]);
dview[i].y=static_cast<numtyp>(lam2[i]);
dview[i].z=static_cast<numtyp>(lam3[i]);
dview[i].w=static_cast<numtyp>(powermint[i]);
}
ucl_copy(ts1,dview,false);
ts1_tex.get_texture(*(this->pair_program),"ts1_tex");
ts1_tex.bind_float(ts1,4);
ts2.alloc(nparams,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<nparams; i++) {
dview[i].x=static_cast<numtyp>(biga[i]);
dview[i].y=static_cast<numtyp>(bigb[i]);
dview[i].z=static_cast<numtyp>(bigr[i]);
dview[i].w=static_cast<numtyp>(bigd[i]);
}
ucl_copy(ts2,dview,false);
ts2_tex.get_texture(*(this->pair_program),"ts2_tex");
ts2_tex.bind_float(ts2,4);
ts3.alloc(nparams,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<nparams; i++) {
dview[i].x=static_cast<numtyp>(beta[i]);
dview[i].y=static_cast<numtyp>(powern[i]);
dview[i].z=static_cast<numtyp>(powern_del[i]);
dview[i].w=static_cast<numtyp>(ca1[i]);
}
ucl_copy(ts3,dview,false);
ts3_tex.get_texture(*(this->pair_program),"ts3_tex");
ts3_tex.bind_float(ts3,4);
ts4.alloc(nparams,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<nparams; i++) {
dview[i].x=static_cast<numtyp>(c1[i]);
dview[i].y=static_cast<numtyp>(c2[i]);
dview[i].z=static_cast<numtyp>(c3[i]);
dview[i].w=static_cast<numtyp>(c4[i]);
}
ucl_copy(ts4,dview,false);
ts4_tex.get_texture(*(this->pair_program),"ts4_tex");
ts4_tex.bind_float(ts4,4);
ts5.alloc(nparams,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<nparams; i++) {
dview[i].x=static_cast<numtyp>(c5[i]);
dview[i].y=static_cast<numtyp>(h[i]);
dview[i].z=(numtyp)0;
dview[i].w=(numtyp)0;
}
ucl_copy(ts5,dview,false);
ts5_tex.get_texture(*(this->pair_program),"ts5_tex");
ts5_tex.bind_float(ts5,4);
UCL_H_Vec<numtyp> cutsq_view(nparams,*(this->ucl_device),
UCL_WRITE_ONLY);
double cutsqmax = 0.0;
for (int i=0; i<nparams; i++) {
cutsq_view[i]=static_cast<numtyp>(host_cutsq[i]);
if (cutsqmax < host_cutsq[i]) cutsqmax = host_cutsq[i];
}
cutsq.alloc(nparams,*(this->ucl_device),UCL_READ_ONLY);
ucl_copy(cutsq,cutsq_view,false);
_cutshortsq = static_cast<numtyp>(cutsqmax);
UCL_H_Vec<int> dview_elem2param(nelements*nelements*nelements,
*(this->ucl_device), UCL_WRITE_ONLY);
elem2param.alloc(nelements*nelements*nelements,*(this->ucl_device),
UCL_READ_ONLY);
for (int i = 0; i < nelements; i++)
for (int j = 0; j < nelements; j++)
for (int k = 0; k < nelements; k++) {
int idx = i*nelements*nelements+j*nelements+k;
dview_elem2param[idx] = host_elem2param[i][j][k];
}
ucl_copy(elem2param,dview_elem2param,false);
UCL_H_Vec<int> dview_map(lj_types, *(this->ucl_device), UCL_WRITE_ONLY);
for (int i = 0; i < ntypes; i++)
dview_map[i] = host_map[i];
map.alloc(lj_types,*(this->ucl_device), UCL_READ_ONLY);
ucl_copy(map,dview_map,false);
_allocated=true;
this->_max_bytes=ts1.row_bytes()+ts2.row_bytes()+ts3.row_bytes()+
ts4.row_bytes()+ts5.row_bytes()+cutsq.row_bytes()+
map.row_bytes()+elem2param.row_bytes()+_zetaij.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void TersoffMT::clear() {
if (!_allocated)
return;
_allocated=false;
ts1.clear();
ts2.clear();
ts3.clear();
ts4.clear();
ts5.clear();
cutsq.clear();
map.clear();
elem2param.clear();
_zetaij.clear();
k_zeta.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double TersoffMT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(TersoffMod<numtyp,acctyp>);
}
#define KTHREADS this->_threads_per_atom
#define JTHREADS this->_threads_per_atom
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void TersoffMT::loop(const bool _eflag, const bool _vflag, const int evatom) {
// Compute the block size and grid size to keep all cores busy
int BX=this->block_pair();
int eflag, vflag;
if (_eflag)
eflag=1;
else
eflag=0;
if (_vflag)
vflag=1;
else
vflag=0;
// build the short neighbor list
int ainum=this->_ainum;
int nbor_pitch=this->nbor->nbor_pitch();
int GX=static_cast<int>(ceil(static_cast<double>(ainum)/
(BX/this->_threads_per_atom)));
this->k_short_nbor.set_size(GX,BX);
this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
&this->_nbor_data->begin(),
&this->dev_short_nbor, &_cutshortsq, &ainum,
&nbor_pitch, &this->_threads_per_atom);
// re-allocate zetaij if necessary
int nall = this->_nall;
if (nall*this->_max_nbors > _zetaij.cols()) {
int _nmax=static_cast<int>(static_cast<double>(nall)*1.10);
_zetaij.resize(this->_max_nbors*_nmax);
}
nbor_pitch=this->nbor->nbor_pitch();
GX=static_cast<int>(ceil(static_cast<double>(this->_ainum)/
(BX/(JTHREADS*KTHREADS))));
this->k_zeta.set_size(GX,BX);
this->k_zeta.run(&this->atom->x, &ts1, &ts2, &ts3, &ts4, &ts5, &cutsq,
&map, &elem2param, &_nelements, &_nparams, &_zetaij,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor,
&eflag, &this->_ainum, &nbor_pitch, &this->_threads_per_atom);
ainum=this->ans->inum();
nbor_pitch=this->nbor->nbor_pitch();
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
this->time_pair.start();
this->k_pair.set_size(GX,BX);
this->k_pair.run(&this->atom->x, &ts1, &ts2, &cutsq,
&map, &elem2param, &_nelements, &_nparams,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor,
&this->ans->force, &this->ans->engv,
&eflag, &vflag, &ainum, &nbor_pitch,
&this->_threads_per_atom);
BX=this->block_size();
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/(KTHREADS*JTHREADS))));
this->k_three_center.set_size(GX,BX);
this->k_three_center.run(&this->atom->x, &ts1, &ts2, &ts4, &ts5, &cutsq,
&map, &elem2param, &_nelements, &_nparams, &_zetaij,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor,
&this->ans->force, &this->ans->engv, &eflag, &vflag, &ainum,
&nbor_pitch, &this->_threads_per_atom, &evatom);
Answer<numtyp,acctyp> *end_ans;
#ifdef THREE_CONCURRENT
end_ans=this->ans2;
#else
end_ans=this->ans;
#endif
if (evatom!=0) {
this->k_three_end_vatom.set_size(GX,BX);
this->k_three_end_vatom.run(&this->atom->x, &ts1, &ts2, &ts4, &ts5, &cutsq,
&map, &elem2param, &_nelements, &_nparams, &_zetaij,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->nbor->dev_ilist, &this->dev_short_nbor,
&end_ans->force, &end_ans->engv, &eflag, &vflag, &ainum,
&nbor_pitch, &this->_threads_per_atom, &this->_gpu_nbor);
} else {
this->k_three_end.set_size(GX,BX);
this->k_three_end.run(&this->atom->x, &ts1, &ts2, &ts4, &ts5, &cutsq,
&map, &elem2param, &_nelements, &_nparams, &_zetaij,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->nbor->dev_ilist, &this->dev_short_nbor,
&end_ans->force, &end_ans->engv, &eflag, &vflag, &ainum,
&nbor_pitch, &this->_threads_per_atom, &this->_gpu_nbor);
}
this->time_pair.stop();
}
template class TersoffMod<PRECISION,ACC_PRECISION>;
}