lammps/lib/cuda/domain_kernel.cu

294 lines
7.2 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
extern __shared__ X_FLOAT sharedmem[];
#define BIG 1e10
__global__ void Domain_PBC_Kernel(int deform_remap, int deform_groupbit, int box_change)
{
int idim, otherdims;
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
X_FLOAT lo[3];
X_FLOAT hi[3];
X_FLOAT* period;
if(_triclinic == 0) {
lo[0] = _boxlo[0];
lo[1] = _boxlo[1];
lo[2] = _boxlo[2];
hi[0] = _boxhi[0];
hi[1] = _boxhi[1];
hi[2] = _boxhi[2];
period = _prd;
} else {
lo[0] = _boxlo_lamda[0];
lo[1] = _boxlo_lamda[1];
lo[2] = _boxlo_lamda[2];
hi[0] = _boxhi_lamda[0];
hi[1] = _boxhi_lamda[1];
hi[2] = _boxhi_lamda[2];
period = _prd_lamda;
}
X_FLOAT tmpx = X_F(0.5) * (hi[0] + lo[0]);
X_FLOAT tmpy = X_F(0.5) * (hi[1] + lo[1]);
X_FLOAT tmpz = X_F(0.5) * (hi[2] + lo[2]);
X_FLOAT* buf = (X_FLOAT*) _buffer;
buf += blockIdx.x * gridDim.y + blockIdx.y;
buf[0] = tmpx;
buf += gridDim.x * gridDim.y;
buf[0] = tmpx;
buf += gridDim.x * gridDim.y;
buf[0] = tmpy;
buf += gridDim.x * gridDim.y;
buf[0] = tmpy;
buf += gridDim.x * gridDim.y;
buf[0] = tmpz;
buf += gridDim.x * gridDim.y;
buf[0] = tmpz;
if(i < _nlocal) {
if(_periodicity[0]) {
if(_x[i] < lo[0]) {
_x[i] += period[0];
if(deform_remap && _mask[i] & deform_groupbit) _v[i] += _h_rate[0];
idim = _image[i] & 1023;
otherdims = _image[i] ^ idim;
idim--;
idim &= 1023;
_image[i] = otherdims | idim;
}
if(_x[i] >= hi[0]) {
_x[i] -= period[0];
_x[i] = MAX(_x[i], lo[0]);
if(deform_remap && _mask[i] & deform_groupbit) _v[i] -= _h_rate[0];
idim = _image[i] & 1023;
otherdims = _image[i] ^ idim;
idim++;
idim &= 1023;
_image[i] = otherdims | idim;
}
}
if(_periodicity[1]) {
if(_x[i + _nmax] < lo[1]) {
_x[i + _nmax] += period[1];
if(deform_remap && _mask[i] & deform_groupbit) {
_v[i] += _h_rate[5];
_v[i + _nmax] += _h_rate[1];
}
idim = (_image[i] >> 10) & 1023;
otherdims = _image[i] ^ (idim << 10);
idim--;
idim &= 1023;
_image[i] = otherdims | (idim << 10);
}
if(_x[i + _nmax] >= hi[1]) {
_x[i + _nmax] -= period[1];
_x[i + _nmax] = MAX(_x[i + _nmax], lo[1]);
if(deform_remap && _mask[i] & deform_groupbit) {
_v[i] -= _h_rate[5];
_v[i + _nmax] -= _h_rate[1];
}
idim = (_image[i] >> 10) & 1023;
otherdims = _image[i] ^ (idim << 10);
idim++;
idim &= 1023;
_image[i] = otherdims | (idim << 10);
}
}
if(_periodicity[2]) {
if(_x[i + 2 * _nmax] < lo[2]) {
_x[i + 2 * _nmax] += period[2];
if(deform_remap && _mask[i] & deform_groupbit) {
_v[i] += _h_rate[4];
_v[i + _nmax] += _h_rate[3];
_v[i + 2 * _nmax] += _h_rate[2];
}
idim = _image[i] >> 20;
otherdims = _image[i] ^ (idim << 20);
idim--;
idim &= 1023;
_image[i] = otherdims | (idim << 20);
}
if(_x[i + 2 * _nmax] >= hi[2]) {
_x[i + 2 * _nmax] -= period[2];
_x[i + 2 * _nmax] = MAX(_x[i + 2 * _nmax], lo[2]);
if(deform_remap && _mask[i] & deform_groupbit) {
_v[i] -= _h_rate[4];
_v[i + _nmax] -= _h_rate[3];
_v[i + 2 * _nmax] -= _h_rate[2];
}
idim = _image[i] >> 20;
otherdims = _image[i] ^ (idim << 20);
idim++;
idim &= 1023;
_image[i] = otherdims | (idim << 20);
}
}
if(box_change) {
tmpx = _x[i];
tmpy = _x[i + _nmax];
tmpz = _x[i + 2 * _nmax];
}
}
__syncthreads();
if(box_change) {
X_FLOAT minx = BIG;
X_FLOAT maxx = -BIG;
X_FLOAT miny = BIG;
X_FLOAT maxy = -BIG;
X_FLOAT minz = BIG;
X_FLOAT maxz = -BIG;
if(not _periodicity[0]) {
sharedmem[threadIdx.x] = tmpx;
minOfBlock(sharedmem);
minx = sharedmem[0];
__syncthreads();
sharedmem[threadIdx.x] = tmpx;
maxOfBlock(sharedmem);
maxx = sharedmem[0];
__syncthreads();
} else {
minx = lo[0];
maxx = hi[0];
}
if(not _periodicity[1]) {
sharedmem[threadIdx.x] = tmpy;
minOfBlock(sharedmem);
miny = sharedmem[0];
__syncthreads();
sharedmem[threadIdx.x] = tmpy;
maxOfBlock(sharedmem);
maxy = sharedmem[0];
__syncthreads();
} else {
minx = lo[1];
maxx = hi[1];
}
if(not _periodicity[2]) {
sharedmem[threadIdx.x] = tmpz;
minOfBlock(sharedmem);
minz = sharedmem[0];
__syncthreads();
sharedmem[threadIdx.x] = tmpz;
maxOfBlock(sharedmem);
maxz = sharedmem[0];
__syncthreads();
} else {
minz = lo[2];
maxz = hi[2];
}
if(threadIdx.x == 0) {
buf = (X_FLOAT*) _buffer;
buf += blockIdx.x * gridDim.y + blockIdx.y;
buf[0] = minx;
buf += gridDim.x * gridDim.y;
buf[0] = maxx;
buf += gridDim.x * gridDim.y;
buf[0] = miny;
buf += gridDim.x * gridDim.y;
buf[0] = maxy;
buf += gridDim.x * gridDim.y;
buf[0] = minz;
buf += gridDim.x * gridDim.y;
buf[0] = maxz;
}
}
}
__global__ void Domain_reduceBoxExtent(double* extent, int n)
{
X_FLOAT* buf = (X_FLOAT*) _buffer;
buf += blockIdx.x * n;
copyGlobToShared(buf, sharedmem, n);
if(blockIdx.x % 2 == 0)
minOfData(sharedmem, n);
else
maxOfData(sharedmem, n);
extent[blockIdx.x] = sharedmem[0];
}
__global__ void Domain_lamda2x_Kernel(int n)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < n) {
X_FLOAT ytmp = _x[i + _nmax];
X_FLOAT ztmp = _x[i + 2 * _nmax];
_x[i] = _h[0] * _x[i] + _h[5] * ytmp + _h[4] * ztmp + _boxlo[0];
_x[i + _nmax] = _h[1] * ytmp + _h[3] * ztmp + _boxlo[1];
_x[i + 2 * _nmax] = _h[2] * ztmp + _boxlo[2];
}
}
__global__ void Domain_x2lamda_Kernel(int n)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
X_FLOAT delta[3];
if(i < n) {
delta[0] = _x[i] - _boxlo[0];
delta[1] = _x[i + _nmax] - _boxlo[1];
delta[2] = _x[i + 2 * _nmax] - _boxlo[2];
_x[i] = _h_inv[0] * delta[0] + _h_inv[5] * delta[1] + _h_inv[4] * delta[2];
_x[i + _nmax] = _h_inv[1] * delta[1] + _h_inv[3] * delta[2];
_x[i + 2 * _nmax] = _h_inv[2] * delta[2];
}
}