lammps/src/random_mars.cpp

320 lines
8.3 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
// Marsaglia random number generator
// see RANMAR in F James, Comp Phys Comm, 60, 329 (1990)
#include "random_mars.h"
#include <cmath>
#include <cstring>
#include "error.h"
#include "math_const.h"
using namespace LAMMPS_NS;
enum{ADD,SUBTRACT};
/* ---------------------------------------------------------------------- */
RanMars::RanMars(LAMMPS *lmp, int seed) : Pointers(lmp),
u(NULL)
{
int ij,kl,i,j,k,l,ii,jj,m;
double s,t;
if (seed <= 0 || seed > 900000000)
error->one(FLERR,"Invalid seed for Marsaglia random # generator");
save = 0;
u = new double[97+1];
memset(u,0,98*sizeof(double));
ij = (seed-1)/30082;
kl = (seed-1) - 30082*ij;
i = (ij/177) % 177 + 2;
j = ij %177 + 2;
k = (kl/169) % 178 + 1;
l = kl % 169;
for (ii = 1; ii <= 97; ii++) {
s = 0.0;
t = 0.5;
for (jj = 1; jj <= 24; jj++) {
m = ((i*j) % 179)*k % 179;
i = j;
j = k;
k = m;
l = (53*l+1) % 169;
if ((l*m) % 64 >= 32) s = s + t;
t = 0.5*t;
}
u[ii] = s;
}
c = 362436.0 / 16777216.0;
cd = 7654321.0 / 16777216.0;
cm = 16777213.0 / 16777216.0;
i97 = 97;
j97 = 33;
uniform();
}
/* ---------------------------------------------------------------------- */
RanMars::~RanMars()
{
delete [] u;
}
/* ----------------------------------------------------------------------
uniform RN
------------------------------------------------------------------------- */
double RanMars::uniform()
{
double uni = u[i97] - u[j97];
if (uni < 0.0) uni += 1.0;
u[i97] = uni;
i97--;
if (i97 == 0) i97 = 97;
j97--;
if (j97 == 0) j97 = 97;
c -= cd;
if (c < 0.0) c += cm;
uni -= c;
if (uni < 0.0) uni += 1.0;
return uni;
}
/* ----------------------------------------------------------------------
gaussian RN
------------------------------------------------------------------------- */
double RanMars::gaussian()
{
double first,v1,v2,rsq,fac;
if (!save) {
do {
v1 = 2.0*uniform()-1.0;
v2 = 2.0*uniform()-1.0;
rsq = v1*v1 + v2*v2;
} while ((rsq >= 1.0) || (rsq == 0.0));
fac = sqrt(-2.0*log(rsq)/rsq);
second = v1*fac;
first = v2*fac;
save = 1;
} else {
first = second;
save = 0;
}
return first;
}
/* ----------------------------------------------------------------------
Gaussian RN
------------------------------------------------------------------------- */
double RanMars::gaussian(double mu, double sigma)
{
double v1;
v1 = mu+sigma*gaussian();
return v1;
}
/* ----------------------------------------------------------------------
Rayleigh RN
------------------------------------------------------------------------- */
double RanMars::rayleigh(double sigma)
{
double first,v1;
if (sigma <= 0) error->all(FLERR,"Invalid Rayleigh parameter");
v1 = uniform();
first = sigma*sqrt(-2.0*log(v1));
return first;
}
/* ----------------------------------------------------------------------
Bessel exponential RN
------------------------------------------------------------------------- */
double RanMars::besselexp(double theta, double alpha, double cp)
{
double first,v1,v2;
if (theta < 0.0 || alpha < 0.0 || alpha > 1.0)
error->all(FLERR,"Invalid Bessel exponential distribution parameters");
v1 = uniform();
v2 = uniform();
if (cp < 0.0)
first = sqrt((1.0-alpha)*cp*cp - 2.0*alpha*theta*log(v1) +
2.0*sqrt(-2.0*theta*(1.0-alpha)*alpha*log(v1)) *
cos(2.0*MathConst::MY_PI*v2)*cp);
else
first = -sqrt((1.0-alpha)*cp*cp - 2.0*alpha*theta*log(v1) -
2.0*sqrt(-2.0*theta*(1.0-alpha)*alpha*log(v1)) *
cos(2.0*MathConst::MY_PI*v2)*cp);
return first;
}
/* ----------------------------------------------------------------------
select random subset of size Ntarget out of Ntotal items
Ntotal = sum of Nmine across all procs
mark,next = vectors of length Nmine
return mark = 0 for unselected item, 1 for selected item
next = work vector used to store linked lists for 2 active sets of items
IMPORTANT: this method must be called simultaneously by all procs
------------------------------------------------------------------------- */
void RanMars::select_subset(bigint ntarget, int nmine, int *mark, int *next)
{
int mode,index,oldindex,newvalue,nflip,which,niter;
int active[2],first[2];
int newactive[2],newfirst[2],newlast[2];
bigint nmark,nflipall;
bigint activeall[2],bsum[3],bsumall[3];
double thresh;
active[0] = nmine;
active[1] = 0;
first[0] = 0;
first[1] = -1;
bigint bnmine = nmine;
bigint bnall;
MPI_Allreduce(&bnmine,&bnall,1,MPI_LMP_BIGINT,MPI_SUM,world);
activeall[0] = bnall;
for (int i = 0; i < nmine; i++) mark[i] = 0;
for (int i = 0; i < nmine; i++) next[i] = i+1;
if (nmine > 0) next[nmine-1] = -1;
nmark = 0;
niter = 0;
while (nmark != ntarget) {
// choose to ADD or SUBTRACT from current nmark
// thresh = desired flips / size of active set
if (ntarget-nmark > 0) {
mode = ADD;
thresh = 1.0 * (ntarget-nmark) / activeall[mode];
} else {
mode = SUBTRACT;
thresh = 1.0 * (nmark-ntarget) / activeall[mode];
}
// bound thresh for RNG accuracy
thresh = MAX(thresh,0.01);
thresh = MIN(thresh,0.99);
// new empty active sets for next iteration
newactive[0] = newactive[1] = 0;
newfirst[0] = newfirst[1] = -1;
newlast[0] = newlast[1] = -1;
// index = first value in ADD or SUBTRACT set
if (mode == ADD) newvalue = 1;
else if (mode == SUBTRACT) newvalue = 0;
index = first[mode];
// flip marks from 0 -> 1 (ADD) or 1 -> 0 (SUBTRACT)
// loop over active set via next vector = linked list
// flip each value based on RN < thresh
nflip = 0;
while ((nmine > 0) && (index >= 0)) {
if (uniform() < thresh) {
mark[index] = newvalue;
nflip++;
}
oldindex = index;
index = next[index];
// oldindex can now be appended to a new active set
// which = which of two new active sets to append to
which = mark[oldindex];
newactive[which]++;
if (newfirst[which] < 0) newfirst[which] = oldindex;
if (newlast[which] >= 0) next[newlast[which]] = oldindex;
newlast[which] = oldindex;
next[oldindex] = -1;
// set active sets for next iteration to the new ones
// next vector is already updated
active[0] = newactive[0];
active[1] = newactive[1];
first[0] = newfirst[0];
first[1] = newfirst[1];
}
// update nmark and activeall
bsum[0] = nflip;
bsum[1] = active[0];
bsum[2] = active[1];
MPI_Allreduce(&bsum,&bsumall,3,MPI_LMP_BIGINT,MPI_SUM,world);
nflipall = bsumall[0];
activeall[0] = bsumall[1];
activeall[1] = bsumall[2];
if (mode == ADD) nmark += nflipall;
else if (mode == SUBTRACT) nmark -= nflipall;
niter++;
// DEBUG output of stats
//if (comm->me == 0) printf("%d %ld %ld %g %ld\n",
// niter,nmark,nactiveall,thresh,nflipall);
}
}
/* ----------------------------------------------------------------------
store state in buffer
------------------------------------------------------------------------- */
void RanMars::get_state(double *state)
{
for (int i=0; i < 98; ++i) state[i] = u[i];
state[98] = i97;
state[99] = j97;
state[100]= c;
state[101]= cd;
state[102]= cm;
}
/* ----------------------------------------------------------------------
restore state from buffer
------------------------------------------------------------------------- */
void RanMars::set_state(double *state)
{
for (int i=0; i < 98; ++i) u[i] = state[i];
i97 = state[98];
j97 = state[99];
c = state[100];
cd = state[101];
cm = state[102];
}