lammps/lib/cuda/cuda_pair_virial_kernel_nc.cu

127 lines
3.7 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
extern __shared__ ENERGY_FLOAT sharedmem[];
static inline __device__ void PairVirialCompute_A_Kernel(int eflag,int vflag,int coulflag=0)
{
__syncthreads();
ENERGY_FLOAT* shared=sharedmem;
if(eflag)
{
reduceBlock(shared);
shared+=blockDim.x;
if(coulflag)
{
reduceBlock(shared);
shared+=blockDim.x;
}
}
if(vflag)
{
reduceBlock(shared + 0 * blockDim.x);
reduceBlock(shared + 1 * blockDim.x);
reduceBlock(shared + 2 * blockDim.x);
reduceBlock(shared + 3 * blockDim.x);
reduceBlock(shared + 4 * blockDim.x);
reduceBlock(shared + 5 * blockDim.x);
}
if(threadIdx.x == 0)
{
shared=sharedmem;
ENERGY_FLOAT* buffer = (ENERGY_FLOAT*) _buffer;
if(eflag)
{
buffer[blockIdx.x * gridDim.y + blockIdx.y] = ENERGY_F(0.5)*shared[0];
shared+=blockDim.x; buffer+=gridDim.x * gridDim.y;
if(coulflag)
{
buffer[blockIdx.x * gridDim.y + blockIdx.y] = ENERGY_F(0.5)*shared[0];
shared+=blockDim.x; buffer+=gridDim.x * gridDim.y;
}
}
if(vflag)
{
buffer[blockIdx.x * gridDim.y + blockIdx.y + 0 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[0 * blockDim.x];
buffer[blockIdx.x * gridDim.y + blockIdx.y + 1 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[1 * blockDim.x];
buffer[blockIdx.x * gridDim.y + blockIdx.y + 2 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[2 * blockDim.x];
buffer[blockIdx.x * gridDim.y + blockIdx.y + 3 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[3 * blockDim.x];
buffer[blockIdx.x * gridDim.y + blockIdx.y + 4 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[4 * blockDim.x];
buffer[blockIdx.x * gridDim.y + blockIdx.y + 5 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[5 * blockDim.x];
}
}
__syncthreads();
}
__global__ void MY_AP(PairVirialCompute_reduce)(int n)
{
sharedmem[threadIdx.x] = ENERGY_F(0.0);
ENERGY_FLOAT sum = ENERGY_F(0.0);
ENERGY_FLOAT* buf = (ENERGY_FLOAT*) _buffer;
buf = &buf[blockIdx.x * n];
//if(blockIdx.x==2) buf=&buf[n];
for(int i = 0; i < n; i += blockDim.x)
{
sharedmem[threadIdx.x] = (i + threadIdx.x < n) ? buf[i + threadIdx.x] : ENERGY_F(0.0);
__syncthreads();
reduceBlock(sharedmem);
if(threadIdx.x == 0) sum += sharedmem[0];
}
if(threadIdx.x==0)
{
if(gridDim.x == 1) //evdwl
{
_eng_vdwl[0]+=sum;
}
if(gridDim.x == 2) //evdwl + ecoul only
{
if(blockIdx.x==0)
_eng_vdwl[0]+=sum;
else
_eng_coul[0]+=sum;
}
if(gridDim.x == 6) //virial
{
_virial[blockIdx.x] += sum;
}
if(gridDim.x == 7) //evdwl+virial
{
if(blockIdx.x==0)
_eng_vdwl[0]+=sum;
else _virial[blockIdx.x-1] += sum;
}
if(gridDim.x == 8) //evdwl+ecoul+virial
{
if(blockIdx.x==0)
_eng_vdwl[0]+=sum;
else
if(blockIdx.x==1)
_eng_coul[0]+=sum;
else
_virial[blockIdx.x-2] += sum;
}
}
}