forked from lijiext/lammps
444 lines
14 KiB
Fortran
444 lines
14 KiB
Fortran
*> \brief \b DTRSM
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION ALPHA
|
|
* INTEGER LDA,LDB,M,N
|
|
* CHARACTER DIAG,SIDE,TRANSA,UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A(LDA,*),B(LDB,*)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DTRSM solves one of the matrix equations
|
|
*>
|
|
*> op( A )*X = alpha*B, or X*op( A ) = alpha*B,
|
|
*>
|
|
*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
|
|
*> non-unit, upper or lower triangular matrix and op( A ) is one of
|
|
*>
|
|
*> op( A ) = A or op( A ) = A**T.
|
|
*>
|
|
*> The matrix X is overwritten on B.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> On entry, SIDE specifies whether op( A ) appears on the left
|
|
*> or right of X as follows:
|
|
*>
|
|
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
|
|
*>
|
|
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> On entry, UPLO specifies whether the matrix A is an upper or
|
|
*> lower triangular matrix as follows:
|
|
*>
|
|
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
|
*>
|
|
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANSA
|
|
*> \verbatim
|
|
*> TRANSA is CHARACTER*1
|
|
*> On entry, TRANSA specifies the form of op( A ) to be used in
|
|
*> the matrix multiplication as follows:
|
|
*>
|
|
*> TRANSA = 'N' or 'n' op( A ) = A.
|
|
*>
|
|
*> TRANSA = 'T' or 't' op( A ) = A**T.
|
|
*>
|
|
*> TRANSA = 'C' or 'c' op( A ) = A**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> On entry, DIAG specifies whether or not A is unit triangular
|
|
*> as follows:
|
|
*>
|
|
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
|
*>
|
|
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
|
*> triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> On entry, M specifies the number of rows of B. M must be at
|
|
*> least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the number of columns of B. N must be
|
|
*> at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is DOUBLE PRECISION.
|
|
*> On entry, ALPHA specifies the scalar alpha. When alpha is
|
|
*> zero then A is not referenced and B need not be set before
|
|
*> entry.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, k ),
|
|
*> where k is m when SIDE = 'L' or 'l'
|
|
*> and k is n when SIDE = 'R' or 'r'.
|
|
*> Before entry with UPLO = 'U' or 'u', the leading k by k
|
|
*> upper triangular part of the array A must contain the upper
|
|
*> triangular matrix and the strictly lower triangular part of
|
|
*> A is not referenced.
|
|
*> Before entry with UPLO = 'L' or 'l', the leading k by k
|
|
*> lower triangular part of the array A must contain the lower
|
|
*> triangular matrix and the strictly upper triangular part of
|
|
*> A is not referenced.
|
|
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
|
*> A are not referenced either, but are assumed to be unity.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> On entry, LDA specifies the first dimension of A as declared
|
|
*> in the calling (sub) program. When SIDE = 'L' or 'l' then
|
|
*> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
|
|
*> then LDA must be at least max( 1, n ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
|
|
*> Before entry, the leading m by n part of the array B must
|
|
*> contain the right-hand side matrix B, and on exit is
|
|
*> overwritten by the solution matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> On entry, LDB specifies the first dimension of B as declared
|
|
*> in the calling (sub) program. LDB must be at least
|
|
*> max( 1, m ).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup double_blas_level3
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 3 Blas routine.
|
|
*>
|
|
*>
|
|
*> -- Written on 8-February-1989.
|
|
*> Jack Dongarra, Argonne National Laboratory.
|
|
*> Iain Duff, AERE Harwell.
|
|
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
|
*> Sven Hammarling, Numerical Algorithms Group Ltd.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
|
|
*
|
|
* -- Reference BLAS level3 routine (version 3.4.0) --
|
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION ALPHA
|
|
INTEGER LDA,LDB,M,N
|
|
CHARACTER DIAG,SIDE,TRANSA,UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A(LDA,*),B(LDB,*)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION TEMP
|
|
INTEGER I,INFO,J,K,NROWA
|
|
LOGICAL LSIDE,NOUNIT,UPPER
|
|
* ..
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE,ZERO
|
|
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
|
|
* ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
LSIDE = LSAME(SIDE,'L')
|
|
IF (LSIDE) THEN
|
|
NROWA = M
|
|
ELSE
|
|
NROWA = N
|
|
END IF
|
|
NOUNIT = LSAME(DIAG,'N')
|
|
UPPER = LSAME(UPLO,'U')
|
|
*
|
|
INFO = 0
|
|
IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
|
|
INFO = 1
|
|
ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
|
|
INFO = 2
|
|
ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
|
|
+ (.NOT.LSAME(TRANSA,'T')) .AND.
|
|
+ (.NOT.LSAME(TRANSA,'C'))) THEN
|
|
INFO = 3
|
|
ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
|
|
INFO = 4
|
|
ELSE IF (M.LT.0) THEN
|
|
INFO = 5
|
|
ELSE IF (N.LT.0) THEN
|
|
INFO = 6
|
|
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
|
|
INFO = 9
|
|
ELSE IF (LDB.LT.MAX(1,M)) THEN
|
|
INFO = 11
|
|
END IF
|
|
IF (INFO.NE.0) THEN
|
|
CALL XERBLA('DTRSM ',INFO)
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF (M.EQ.0 .OR. N.EQ.0) RETURN
|
|
*
|
|
* And when alpha.eq.zero.
|
|
*
|
|
IF (ALPHA.EQ.ZERO) THEN
|
|
DO 20 J = 1,N
|
|
DO 10 I = 1,M
|
|
B(I,J) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Start the operations.
|
|
*
|
|
IF (LSIDE) THEN
|
|
IF (LSAME(TRANSA,'N')) THEN
|
|
*
|
|
* Form B := alpha*inv( A )*B.
|
|
*
|
|
IF (UPPER) THEN
|
|
DO 60 J = 1,N
|
|
IF (ALPHA.NE.ONE) THEN
|
|
DO 30 I = 1,M
|
|
B(I,J) = ALPHA*B(I,J)
|
|
30 CONTINUE
|
|
END IF
|
|
DO 50 K = M,1,-1
|
|
IF (B(K,J).NE.ZERO) THEN
|
|
IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
|
|
DO 40 I = 1,K - 1
|
|
B(I,J) = B(I,J) - B(K,J)*A(I,K)
|
|
40 CONTINUE
|
|
END IF
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 100 J = 1,N
|
|
IF (ALPHA.NE.ONE) THEN
|
|
DO 70 I = 1,M
|
|
B(I,J) = ALPHA*B(I,J)
|
|
70 CONTINUE
|
|
END IF
|
|
DO 90 K = 1,M
|
|
IF (B(K,J).NE.ZERO) THEN
|
|
IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
|
|
DO 80 I = K + 1,M
|
|
B(I,J) = B(I,J) - B(K,J)*A(I,K)
|
|
80 CONTINUE
|
|
END IF
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form B := alpha*inv( A**T )*B.
|
|
*
|
|
IF (UPPER) THEN
|
|
DO 130 J = 1,N
|
|
DO 120 I = 1,M
|
|
TEMP = ALPHA*B(I,J)
|
|
DO 110 K = 1,I - 1
|
|
TEMP = TEMP - A(K,I)*B(K,J)
|
|
110 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/A(I,I)
|
|
B(I,J) = TEMP
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
ELSE
|
|
DO 160 J = 1,N
|
|
DO 150 I = M,1,-1
|
|
TEMP = ALPHA*B(I,J)
|
|
DO 140 K = I + 1,M
|
|
TEMP = TEMP - A(K,I)*B(K,J)
|
|
140 CONTINUE
|
|
IF (NOUNIT) TEMP = TEMP/A(I,I)
|
|
B(I,J) = TEMP
|
|
150 CONTINUE
|
|
160 CONTINUE
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
IF (LSAME(TRANSA,'N')) THEN
|
|
*
|
|
* Form B := alpha*B*inv( A ).
|
|
*
|
|
IF (UPPER) THEN
|
|
DO 210 J = 1,N
|
|
IF (ALPHA.NE.ONE) THEN
|
|
DO 170 I = 1,M
|
|
B(I,J) = ALPHA*B(I,J)
|
|
170 CONTINUE
|
|
END IF
|
|
DO 190 K = 1,J - 1
|
|
IF (A(K,J).NE.ZERO) THEN
|
|
DO 180 I = 1,M
|
|
B(I,J) = B(I,J) - A(K,J)*B(I,K)
|
|
180 CONTINUE
|
|
END IF
|
|
190 CONTINUE
|
|
IF (NOUNIT) THEN
|
|
TEMP = ONE/A(J,J)
|
|
DO 200 I = 1,M
|
|
B(I,J) = TEMP*B(I,J)
|
|
200 CONTINUE
|
|
END IF
|
|
210 CONTINUE
|
|
ELSE
|
|
DO 260 J = N,1,-1
|
|
IF (ALPHA.NE.ONE) THEN
|
|
DO 220 I = 1,M
|
|
B(I,J) = ALPHA*B(I,J)
|
|
220 CONTINUE
|
|
END IF
|
|
DO 240 K = J + 1,N
|
|
IF (A(K,J).NE.ZERO) THEN
|
|
DO 230 I = 1,M
|
|
B(I,J) = B(I,J) - A(K,J)*B(I,K)
|
|
230 CONTINUE
|
|
END IF
|
|
240 CONTINUE
|
|
IF (NOUNIT) THEN
|
|
TEMP = ONE/A(J,J)
|
|
DO 250 I = 1,M
|
|
B(I,J) = TEMP*B(I,J)
|
|
250 CONTINUE
|
|
END IF
|
|
260 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form B := alpha*B*inv( A**T ).
|
|
*
|
|
IF (UPPER) THEN
|
|
DO 310 K = N,1,-1
|
|
IF (NOUNIT) THEN
|
|
TEMP = ONE/A(K,K)
|
|
DO 270 I = 1,M
|
|
B(I,K) = TEMP*B(I,K)
|
|
270 CONTINUE
|
|
END IF
|
|
DO 290 J = 1,K - 1
|
|
IF (A(J,K).NE.ZERO) THEN
|
|
TEMP = A(J,K)
|
|
DO 280 I = 1,M
|
|
B(I,J) = B(I,J) - TEMP*B(I,K)
|
|
280 CONTINUE
|
|
END IF
|
|
290 CONTINUE
|
|
IF (ALPHA.NE.ONE) THEN
|
|
DO 300 I = 1,M
|
|
B(I,K) = ALPHA*B(I,K)
|
|
300 CONTINUE
|
|
END IF
|
|
310 CONTINUE
|
|
ELSE
|
|
DO 360 K = 1,N
|
|
IF (NOUNIT) THEN
|
|
TEMP = ONE/A(K,K)
|
|
DO 320 I = 1,M
|
|
B(I,K) = TEMP*B(I,K)
|
|
320 CONTINUE
|
|
END IF
|
|
DO 340 J = K + 1,N
|
|
IF (A(J,K).NE.ZERO) THEN
|
|
TEMP = A(J,K)
|
|
DO 330 I = 1,M
|
|
B(I,J) = B(I,J) - TEMP*B(I,K)
|
|
330 CONTINUE
|
|
END IF
|
|
340 CONTINUE
|
|
IF (ALPHA.NE.ONE) THEN
|
|
DO 350 I = 1,M
|
|
B(I,K) = ALPHA*B(I,K)
|
|
350 CONTINUE
|
|
END IF
|
|
360 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DTRSM .
|
|
*
|
|
END
|