forked from lijiext/lammps
422 lines
10 KiB
Fortran
422 lines
10 KiB
Fortran
*> \brief \b DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLASQ3 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq3.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq3.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq3.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
|
|
* ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
|
|
* DN2, G, TAU )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL IEEE
|
|
* INTEGER I0, ITER, N0, NDIV, NFAIL, PP
|
|
* DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
|
|
* $ QMAX, SIGMA, TAU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION Z( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
|
|
*> In case of failure it changes shifts, and tries again until output
|
|
*> is positive.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] I0
|
|
*> \verbatim
|
|
*> I0 is INTEGER
|
|
*> First index.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] N0
|
|
*> \verbatim
|
|
*> N0 is INTEGER
|
|
*> Last index.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension ( 4*N )
|
|
*> Z holds the qd array.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] PP
|
|
*> \verbatim
|
|
*> PP is INTEGER
|
|
*> PP=0 for ping, PP=1 for pong.
|
|
*> PP=2 indicates that flipping was applied to the Z array
|
|
*> and that the initial tests for deflation should not be
|
|
*> performed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DMIN
|
|
*> \verbatim
|
|
*> DMIN is DOUBLE PRECISION
|
|
*> Minimum value of d.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SIGMA
|
|
*> \verbatim
|
|
*> SIGMA is DOUBLE PRECISION
|
|
*> Sum of shifts used in current segment.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DESIG
|
|
*> \verbatim
|
|
*> DESIG is DOUBLE PRECISION
|
|
*> Lower order part of SIGMA
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QMAX
|
|
*> \verbatim
|
|
*> QMAX is DOUBLE PRECISION
|
|
*> Maximum value of q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] NFAIL
|
|
*> \verbatim
|
|
*> NFAIL is INTEGER
|
|
*> Number of times shift was too big.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ITER
|
|
*> \verbatim
|
|
*> ITER is INTEGER
|
|
*> Number of iterations.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] NDIV
|
|
*> \verbatim
|
|
*> NDIV is INTEGER
|
|
*> Number of divisions.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IEEE
|
|
*> \verbatim
|
|
*> IEEE is LOGICAL
|
|
*> Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] TTYPE
|
|
*> \verbatim
|
|
*> TTYPE is INTEGER
|
|
*> Shift type.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DMIN1
|
|
*> \verbatim
|
|
*> DMIN1 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DMIN2
|
|
*> \verbatim
|
|
*> DMIN2 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DN
|
|
*> \verbatim
|
|
*> DN is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DN1
|
|
*> \verbatim
|
|
*> DN1 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] DN2
|
|
*> \verbatim
|
|
*> DN2 is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] G
|
|
*> \verbatim
|
|
*> G is DOUBLE PRECISION
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] TAU
|
|
*> \verbatim
|
|
*> TAU is DOUBLE PRECISION
|
|
*>
|
|
*> These are passed as arguments in order to save their values
|
|
*> between calls to DLASQ3.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date September 2012
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
|
|
$ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
|
|
$ DN2, G, TAU )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* September 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL IEEE
|
|
INTEGER I0, ITER, N0, NDIV, NFAIL, PP
|
|
DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
|
|
$ QMAX, SIGMA, TAU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION Z( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION CBIAS
|
|
PARAMETER ( CBIAS = 1.50D0 )
|
|
DOUBLE PRECISION ZERO, QURTR, HALF, ONE, TWO, HUNDRD
|
|
PARAMETER ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
|
|
$ ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER IPN4, J4, N0IN, NN, TTYPE
|
|
DOUBLE PRECISION EPS, S, T, TEMP, TOL, TOL2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLASQ4, DLASQ5, DLASQ6
|
|
* ..
|
|
* .. External Function ..
|
|
DOUBLE PRECISION DLAMCH
|
|
LOGICAL DISNAN
|
|
EXTERNAL DISNAN, DLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
N0IN = N0
|
|
EPS = DLAMCH( 'Precision' )
|
|
TOL = EPS*HUNDRD
|
|
TOL2 = TOL**2
|
|
*
|
|
* Check for deflation.
|
|
*
|
|
10 CONTINUE
|
|
*
|
|
IF( N0.LT.I0 )
|
|
$ RETURN
|
|
IF( N0.EQ.I0 )
|
|
$ GO TO 20
|
|
NN = 4*N0 + PP
|
|
IF( N0.EQ.( I0+1 ) )
|
|
$ GO TO 40
|
|
*
|
|
* Check whether E(N0-1) is negligible, 1 eigenvalue.
|
|
*
|
|
IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
|
|
$ Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
|
|
$ GO TO 30
|
|
*
|
|
20 CONTINUE
|
|
*
|
|
Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
|
|
N0 = N0 - 1
|
|
GO TO 10
|
|
*
|
|
* Check whether E(N0-2) is negligible, 2 eigenvalues.
|
|
*
|
|
30 CONTINUE
|
|
*
|
|
IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
|
|
$ Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
|
|
$ GO TO 50
|
|
*
|
|
40 CONTINUE
|
|
*
|
|
IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
|
|
S = Z( NN-3 )
|
|
Z( NN-3 ) = Z( NN-7 )
|
|
Z( NN-7 ) = S
|
|
END IF
|
|
T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
|
|
IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2.AND.T.NE.ZERO ) THEN
|
|
S = Z( NN-3 )*( Z( NN-5 ) / T )
|
|
IF( S.LE.T ) THEN
|
|
S = Z( NN-3 )*( Z( NN-5 ) /
|
|
$ ( T*( ONE+SQRT( ONE+S / T ) ) ) )
|
|
ELSE
|
|
S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
|
|
END IF
|
|
T = Z( NN-7 ) + ( S+Z( NN-5 ) )
|
|
Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
|
|
Z( NN-7 ) = T
|
|
END IF
|
|
Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
|
|
Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
|
|
N0 = N0 - 2
|
|
GO TO 10
|
|
*
|
|
50 CONTINUE
|
|
IF( PP.EQ.2 )
|
|
$ PP = 0
|
|
*
|
|
* Reverse the qd-array, if warranted.
|
|
*
|
|
IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
|
|
IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
|
|
IPN4 = 4*( I0+N0 )
|
|
DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
|
|
TEMP = Z( J4-3 )
|
|
Z( J4-3 ) = Z( IPN4-J4-3 )
|
|
Z( IPN4-J4-3 ) = TEMP
|
|
TEMP = Z( J4-2 )
|
|
Z( J4-2 ) = Z( IPN4-J4-2 )
|
|
Z( IPN4-J4-2 ) = TEMP
|
|
TEMP = Z( J4-1 )
|
|
Z( J4-1 ) = Z( IPN4-J4-5 )
|
|
Z( IPN4-J4-5 ) = TEMP
|
|
TEMP = Z( J4 )
|
|
Z( J4 ) = Z( IPN4-J4-4 )
|
|
Z( IPN4-J4-4 ) = TEMP
|
|
60 CONTINUE
|
|
IF( N0-I0.LE.4 ) THEN
|
|
Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
|
|
Z( 4*N0-PP ) = Z( 4*I0-PP )
|
|
END IF
|
|
DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
|
|
Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
|
|
$ Z( 4*I0+PP+3 ) )
|
|
Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
|
|
$ Z( 4*I0-PP+4 ) )
|
|
QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
|
|
DMIN = -ZERO
|
|
END IF
|
|
END IF
|
|
*
|
|
* Choose a shift.
|
|
*
|
|
CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
|
|
$ DN2, TAU, TTYPE, G )
|
|
*
|
|
* Call dqds until DMIN > 0.
|
|
*
|
|
70 CONTINUE
|
|
*
|
|
CALL DLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2, DN,
|
|
$ DN1, DN2, IEEE, EPS )
|
|
*
|
|
NDIV = NDIV + ( N0-I0+2 )
|
|
ITER = ITER + 1
|
|
*
|
|
* Check status.
|
|
*
|
|
IF( DMIN.GE.ZERO .AND. DMIN1.GE.ZERO ) THEN
|
|
*
|
|
* Success.
|
|
*
|
|
GO TO 90
|
|
*
|
|
ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
|
|
$ Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
|
|
$ ABS( DN ).LT.TOL*SIGMA ) THEN
|
|
*
|
|
* Convergence hidden by negative DN.
|
|
*
|
|
Z( 4*( N0-1 )-PP+2 ) = ZERO
|
|
DMIN = ZERO
|
|
GO TO 90
|
|
ELSE IF( DMIN.LT.ZERO ) THEN
|
|
*
|
|
* TAU too big. Select new TAU and try again.
|
|
*
|
|
NFAIL = NFAIL + 1
|
|
IF( TTYPE.LT.-22 ) THEN
|
|
*
|
|
* Failed twice. Play it safe.
|
|
*
|
|
TAU = ZERO
|
|
ELSE IF( DMIN1.GT.ZERO ) THEN
|
|
*
|
|
* Late failure. Gives excellent shift.
|
|
*
|
|
TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
|
|
TTYPE = TTYPE - 11
|
|
ELSE
|
|
*
|
|
* Early failure. Divide by 4.
|
|
*
|
|
TAU = QURTR*TAU
|
|
TTYPE = TTYPE - 12
|
|
END IF
|
|
GO TO 70
|
|
ELSE IF( DISNAN( DMIN ) ) THEN
|
|
*
|
|
* NaN.
|
|
*
|
|
IF( TAU.EQ.ZERO ) THEN
|
|
GO TO 80
|
|
ELSE
|
|
TAU = ZERO
|
|
GO TO 70
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Possible underflow. Play it safe.
|
|
*
|
|
GO TO 80
|
|
END IF
|
|
*
|
|
* Risk of underflow.
|
|
*
|
|
80 CONTINUE
|
|
CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
|
|
NDIV = NDIV + ( N0-I0+2 )
|
|
ITER = ITER + 1
|
|
TAU = ZERO
|
|
*
|
|
90 CONTINUE
|
|
IF( TAU.LT.SIGMA ) THEN
|
|
DESIG = DESIG + TAU
|
|
T = SIGMA + DESIG
|
|
DESIG = DESIG - ( T-SIGMA )
|
|
ELSE
|
|
T = SIGMA + TAU
|
|
DESIG = SIGMA - ( T-TAU ) + DESIG
|
|
END IF
|
|
SIGMA = T
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLASQ3
|
|
*
|
|
END
|