lammps/lib/atc/KinetoThermostat.h

799 lines
25 KiB
C++

#ifndef KINETOTHERMOSTAT_H
#define KINETOTHERMOSTAT_H
#include "AtomicRegulator.h"
#include "PerAtomQuantityLibrary.h"
#include "Kinetostat.h"
#include "Thermostat.h"
#include <map>
#include <set>
#include <string>
namespace ATC {
static const int myCouplingMaxIterations = 50;
// forward declarations
class MomentumTimeIntegrator;
class ThermalTimeIntegrator;
class AtfShapeFunctionRestriction;
class FundamentalAtomQuantity;
class PrescribedDataManager;
/**
* @class KinetoThermostat
* @brief Manager class for atom-continuum simulataneous control of momentum and thermal energy
*/
class KinetoThermostat : public AtomicRegulator {
public:
// constructor
KinetoThermostat(ATC_Coupling * atc,
const std::string & regulatorPrefix = "");
// destructor
virtual ~KinetoThermostat(){};
/** parser/modifier */
virtual bool modify(int narg, char **arg);
/** instantiate up the desired method(s) */
virtual void construct_methods();
// data access, intended for method objects
/** reset the nodal power to a prescribed value */
virtual void reset_lambda_contribution(const DENS_MAT & target,
const FieldName field);
/** return value for the max number of mechanical/thermal coupling iterations */
int coupling_max_iterations() const {return couplingMaxIterations_;};
protected:
/** maximum number of iterations used to solved coupled thermo/mechanical problem */
int couplingMaxIterations_;
private:
// DO NOT define this
KinetoThermostat();
};
/**
* @class KinetoThermostatShapeFunction
* @brief Class for kinetostat/thermostat algorithms using the shape function matrices
* (thermostats have general for of N^T w N lambda = rhs)
*/
class KinetoThermostatShapeFunction : public RegulatorMethod {
public:
KinetoThermostatShapeFunction(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations,
const std::string & regulatorPrefix = "") : RegulatorMethod(kinetoThermostat),
couplingMaxIterations_(couplingMaxIterations) {};
virtual ~KinetoThermostatShapeFunction() {};
/** instantiate all needed data */
virtual void construct_transfers() = 0;
/** initialize all data */
virtual void initialize() {tolerance_ = atomicRegulator_->tolerance();};
protected:
/** maximum number of iterations between energy and momentum regulators */
int couplingMaxIterations_;
/** tolerance */
double tolerance_;
private:
// DO NOT define this
KinetoThermostatShapeFunction();
};
/**
* @class VelocityRescaleCombined
* @brief Enforces constraints on atomic velocity based on FE temperature and velocity
*/
class VelocityRescaleCombined : public VelocityGlc {
public:
friend class KinetoThermostatRescale; // since this is basically a set of member functions for friend
VelocityRescaleCombined(AtomicRegulator * kinetostat);
virtual ~VelocityRescaleCombined(){};
/** pre-run initialization of method data */
virtual void initialize();
/** applies kinetostat to atoms */
virtual void apply_mid_predictor(double dt){};
/** applies kinetostat to atoms */
virtual void apply_post_corrector(double dt){};
/** local shape function matrices are incompatible with this mode */
virtual bool use_local_shape_functions() const {return false;};
protected:
// data
/** reference to AtC FE velocity */
DENS_MAN & velocity_;
/** RHS correct based on thermostat */
DENS_MAN * thermostatCorrection_;
// methods
/** sets up appropriate rhs for kinetostat equations */
virtual void set_kinetostat_rhs(DENS_MAT & rhs, double dt);
// disable un-needed functionality
/** does initial filtering operations before main computation */
virtual void apply_pre_filtering(double dt){};
/** applies kinetostat correction to atoms */
virtual void apply_kinetostat(double dt) {};
/** computes the nodal FE force applied by the kinetostat */
virtual void compute_nodal_lambda_force(double dt){};
/** apply any required corrections for localized kinetostats */
virtual void apply_localization_correction(const DENS_MAT & source,
DENS_MAT & nodalField,
double weight = 1.){};
private:
// DO NOT define this
VelocityRescaleCombined();
};
/**
* @class ThermostatRescaleCombined
* @brief Enforces constraint on atomic kinetic energy based on FE temperature and velocity
*/
class ThermostatRescaleCombined : public ThermostatRescale {
public:
ThermostatRescaleCombined(AtomicRegulator * thermostat);
virtual ~ThermostatRescaleCombined() {};
/** pre-run initialization of method data */
virtual void initialize();
// deactivate un-needed methods
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt){};
protected:
// data
/** RHS correct based on kinetostat */
DENS_MAN * kinetostatCorrection_;
// deactivate un-needed methods
/** apply solution to atomic quantities */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities){};
/** construct the RHS vector */
virtual void set_rhs(DENS_MAT & rhs);
private:
// DO NOT define this
ThermostatRescaleCombined();
};
/**
* @class KinetoThermostatRescale
* @brief Enforces constraints on atomic kinetic energy and velocity based on FE temperature and velocity
*/
class KinetoThermostatRescale : public KinetoThermostatShapeFunction {
public:
KinetoThermostatRescale(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations);
virtual ~KinetoThermostatRescale();
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** compute boundary flux, requires thermostat input since it is part of the coupling scheme */
virtual void compute_boundary_flux(FIELDS & fields)
{boundaryFlux_[TEMPERATURE] = 0.; boundaryFlux_[VELOCITY] = 0.;};
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
protected:
// methods
/** apply solution to atomic quantities */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities);
/** creates the appropriate rescaling thermostat */
virtual ThermostatRescale * construct_rescale_thermostat();
// data
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** clone of FE velocity field */
DENS_MAN & nodalVelocities_;
/** lambda coupling parameter for momentum */
DENS_MAN * lambdaMomentum_;
/** lambda coupling parameter for energy */
DENS_MAN * lambdaEnergy_;
/** pointer to rescaled velocity fluctuations */
PerAtomQuantity<double> * atomicFluctuatingVelocityRescaled_;
/** pointer to streaming velocity */
PerAtomQuantity<double> * atomicStreamingVelocity_;
/** rescaling thermostat */
ThermostatRescale * thermostat_;
/** velocity regulating kinetostat */
VelocityRescaleCombined * kinetostat_;
// workspace
DENS_MAT _lambdaEnergyOld_, _lambdaMomentumOld_, _diff_;
private:
// DO NOT define this
KinetoThermostatRescale();
};
/**
* @class ThermostatRescaleMixedKePeCombined
* @brief Enforces constraint on atomic kinetic energy based on FE temperature and velocity when the temperature is comprised of both KE and PE contributions
*/
class ThermostatRescaleMixedKePeCombined : public ThermostatRescaleMixedKePe {
public:
ThermostatRescaleMixedKePeCombined(AtomicRegulator * thermostat);
virtual ~ThermostatRescaleMixedKePeCombined() {};
/** pre-run initialization of method data */
virtual void initialize();
// deactivate un-needed methods
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt){};
protected:
// data
/** RHS correct based on kinetostat */
DENS_MAN * kinetostatCorrection_;
// deactivate un-needed methods
/** apply solution to atomic quantities */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomVelocities){};
/** construct the RHS vector */
virtual void set_rhs(DENS_MAT & rhs);
private:
// DO NOT define this
ThermostatRescaleMixedKePeCombined();
};
/**
* @class KinetoThermostatRescaleMixedKePe
* @brief Enforces constraint on atomic kinetic energy based on FE temperature
* when the temperature is a mix of the KE and PE
*/
class KinetoThermostatRescaleMixedKePe : public KinetoThermostatRescale {
public:
KinetoThermostatRescaleMixedKePe(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations);
virtual ~KinetoThermostatRescaleMixedKePe() {};
protected:
/** creates the appropriate rescaling thermostat */
virtual ThermostatRescale * construct_rescale_thermostat();
private:
// DO NOT define this
KinetoThermostatRescaleMixedKePe();
};
/**
* @class KinetoThermostatGlcFs
* @brief Class for regulation algorithms based on Gaussian least constraints (GLC) for fractional step (FS) algorithsm
*/
class KinetoThermostatGlcFs : public KinetoThermostatShapeFunction {
public:
KinetoThermostatGlcFs(AtomicRegulator * kinetoThermostat,
int couplingMaxIterations,
const std::string & regulatorPrefix = "");
virtual ~KinetoThermostatGlcFs() {};
/** instantiate all needed data */
virtual void construct_transfers();
/** pre-run initialization of method data */
virtual void initialize();
/** applies thermostat to atoms in the predictor phase */
virtual void apply_pre_predictor(double dt);
/** applies thermostat to atoms in the pre-corrector phase */
virtual void apply_pre_corrector(double dt);
/** applies thermostat to atoms in the post-corrector phase */
virtual void apply_post_corrector(double dt);
/** get data for output */
virtual void output(OUTPUT_LIST & outputData);
/* flag for performing the full lambda prediction calculation */
bool full_prediction();
protected:
// methods
/** apply forces to atoms */
virtual void apply_to_atoms(PerAtomQuantity<double> * atomicVelocity,
const DENS_MAN * nodalAtomicMomentum,
const DENS_MAN * nodalAtomicEnergy,
const DENS_MAT & lambdaForce,
DENS_MAT & nodalAtomicLambdaForce,
DENS_MAT & nodalAtomicLambdaPower,
double dt);
// USE BASE CLASSES FOR THESE
/** add contributions from regulator to FE momentum */
virtual void add_to_momentum(const DENS_MAT & nodalLambdaForce,
DENS_MAT & deltaForce,
double dt) = 0;
/** add contributions from regulator to FE energy */
virtual void add_to_energy(const DENS_MAT & nodalLambdaPower,
DENS_MAT & deltaEnergy,
double dt) = 0;
/* sets up and solves the linear system for lambda */
virtual void compute_lambda(double dt,
bool iterateSolution = true);
// member data
/** reference to AtC FE velocity */
DENS_MAN & velocity_;
/** reference to AtC FE temperature */
DENS_MAN & temperature_;
/** pointer to a time filtering object */
TimeFilter * timeFilter_;
/** force induced by lambda */
DENS_MAN * nodalAtomicLambdaForce_;
/** filtered lambda force */
DENS_MAN * lambdaForceFiltered_;
/** power induced by lambda */
DENS_MAN * nodalAtomicLambdaPower_;
/** filtered lambda power */
DENS_MAN * lambdaPowerFiltered_;
/** atomic force induced by lambda */
AtomicThermostatForce * atomRegulatorForces_;
/** atomic force induced by thermostat lambda */
AtomicThermostatForce * atomThermostatForces_;
/** pointer to atom masses */
FundamentalAtomQuantity * atomMasses_;
/** pointer to atom velocities */
FundamentalAtomQuantity * atomVelocities_;
/** hack to determine if first timestep has been passed */
bool isFirstTimestep_;
/** nodal atomic momentum */
DENS_MAN * nodalAtomicMomentum_;
/** nodal atomic energy */
DENS_MAN * nodalAtomicEnergy_;
/** local version of velocity used as predicted final veloctiy */
PerAtomQuantity<double> * atomPredictedVelocities_;
/** predicted nodal atomic momentum */
AtfShapeFunctionRestriction * nodalAtomicPredictedMomentum_;
/** predicted nodal atomic energy */
AtfShapeFunctionRestriction * nodalAtomicPredictedEnergy_;
/** pointer for force applied in first time step */
DENS_MAN * firstHalfAtomForces_;
/** FE momentum change from regulator during predictor phase in second half of timestep */
DENS_MAT deltaMomentum_;
/** FE temperature change from regulator during predictor phase in second half of timestep */
DENS_MAT deltaEnergy1_;
/** FE temperature change from regulator during corrector phase in second half of timestep */
DENS_MAT deltaEnergy2_;
/** fraction of timestep over which constraint is exactly enforced */
double dtFactor_;
// workspace
DENS_MAT _lambdaForceOutput_; // force applied by lambda in output format
DENS_MAT _lambdaPowerOutput_; // power applied by lambda in output format
DENS_MAT _velocityDelta_; // change in velocity when lambda force is applied
private:
// DO NOT define this
KinetoThermostatGlcFs();
};
/* #ifdef WIP_JAT */
/* /\** */
/* * @class ThermostatFlux */
/* * @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/* *\/ */
/* class ThermostatFlux : public ThermostatGlcFs { */
/* public: */
/* ThermostatFlux(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFlux() {}; */
/* /\** instantiate all needed data *\/ */
/* virtual void construct_transfers(); */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* protected: */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to FE energy *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* /\** sets up the transfer which is the set of nodes being regulated *\/ */
/* virtual void construct_regulated_nodes(); */
/* // data */
/* /\** reference to ATC sources coming from prescribed data, AtC coupling, and extrinsic coupling *\/ */
/* DENS_MAN & heatSource_; */
/* private: */
/* // DO NOT define this */
/* ThermostatFlux(); */
/* }; */
/* /\** */
/* * @class ThermostatFixed */
/* * @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/* *\/ */
/* class ThermostatFixed : public ThermostatGlcFs { */
/* public: */
/* ThermostatFixed(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFixed() {}; */
/* /\** instantiate all needed data *\/ */
/* virtual void construct_transfers(); */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* /\** applies thermostat to atoms in the predictor phase *\/ */
/* virtual void apply_pre_predictor(double dt); */
/* /\** applies thermostat to atoms in the pre-corrector phase *\/ */
/* virtual void apply_pre_corrector(double dt); */
/* /\** applies thermostat to atoms in the post-corrector phase *\/ */
/* virtual void apply_post_corrector(double dt); */
/* /\** compute boundary flux, requires thermostat input since it is part of the coupling scheme *\/ */
/* virtual void compute_boundary_flux(FIELDS & fields) */
/* {boundaryFlux_[TEMPERATURE] = 0.;}; */
/* /\** determine if local shape function matrices are needed *\/ */
/* virtual bool use_local_shape_functions() const {return atomicRegulator_->use_localized_lambda();}; */
/* protected: */
/* // methods */
/* /\** initialize data for tracking the change in nodal atomic temperature *\/ */
/* virtual void initialize_delta_nodal_atomic_energy(double dt); */
/* /\** compute the change in nodal atomic temperature *\/ */
/* virtual void compute_delta_nodal_atomic_energy(double dt); */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to FE energy *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* /\* sets up and solves the linear system for lambda *\/ */
/* virtual void compute_lambda(double dt, */
/* bool iterateSolution = true); */
/* /\** flag for halving the applied force to mitigate numerical errors *\/ */
/* bool halve_force(); */
/* /\** sets up the transfer which is the set of nodes being regulated *\/ */
/* virtual void construct_regulated_nodes(); */
/* // data */
/* /\** change in FE energy over a timestep *\/ */
/* DENS_MAT deltaFeEnergy_; */
/* /\** initial FE energy used to compute change *\/ */
/* DENS_MAT initialFeEnergy_; */
/* /\** change in restricted atomic FE energy over a timestep *\/ */
/* DENS_MAT deltaNodalAtomicEnergy_; */
/* /\** intial restricted atomic FE energy used to compute change *\/ */
/* DENS_MAT initialNodalAtomicEnergy_; */
/* /\** filtered nodal atomic energy *\/ */
/* DENS_MAN nodalAtomicEnergyFiltered_; */
/* /\** forces depending on predicted velocities for correct updating with fixed nodes *\/ */
/* AtomicThermostatForce * atomThermostatForcesPredVel_; */
/* /\** coefficient to account for effect of time filtering on rhs terms *\/ */
/* double filterCoefficient_; */
/* /\** kinetic energy multiplier in total energy (used for temperature expression) *\/ */
/* double keMultiplier_; */
/* // workspace */
/* DENS_MAT _tempNodalAtomicEnergyFiltered_; // stores filtered energy change in atoms for persistence during predictor */
/* private: */
/* // DO NOT define this */
/* ThermostatFixed(); */
/* }; */
/* /\** */
/* * @class ThermostatFluxFiltered */
/* * @brief Class enforces GLC on atomic forces based on FE power when using fractional step time integration */
/* * in conjunction with time filtering */
/* *\/ */
/* class ThermostatFluxFiltered : public ThermostatFlux { */
/* public: */
/* ThermostatFluxFiltered(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFluxFiltered() {}; */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* /\** applies thermostat to atoms in the post-corrector phase *\/ */
/* virtual void apply_post_corrector(double dt); */
/* /\** get data for output *\/ */
/* virtual void output(OUTPUT_LIST & outputData); */
/* protected: */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to FE energy *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* // data */
/* /\** heat source time history required to get instantaneous heat sources *\/ */
/* DENS_MAT heatSourceOld_; */
/* DENS_MAT instantHeatSource_; */
/* DENS_MAT timeStepSource_; */
/* private: */
/* // DO NOT define this */
/* ThermostatFluxFiltered(); */
/* }; */
/* /\** */
/* * @class ThermostatFixedFiltered */
/* * @brief Class for thermostatting using the temperature matching constraint and is compatible with */
/* the fractional step time-integration with time filtering */
/* *\/ */
/* class ThermostatFixedFiltered : public ThermostatFixed { */
/* public: */
/* ThermostatFixedFiltered(Thermostat * thermostat, */
/* const std::string & regulatorPrefix = ""); */
/* virtual ~ThermostatFixedFiltered() {}; */
/* /\** get data for output *\/ */
/* virtual void output(OUTPUT_LIST & outputData); */
/* protected: */
/* // methods */
/* /\** initialize data for tracking the change in nodal atomic temperature *\/ */
/* virtual void initialize_delta_nodal_atomic_energy(double dt); */
/* /\** compute the change in nodal atomic temperature *\/ */
/* virtual void compute_delta_nodal_atomic_energy(double dt); */
/* /\** sets up appropriate rhs for thermostat equations *\/ */
/* virtual void set_thermostat_rhs(DENS_MAT & rhs, */
/* double dt); */
/* /\** add contributions from thermostat to temperature for uncoupled nodes *\/ */
/* virtual void add_to_energy(const DENS_MAT & nodalLambdaPower, */
/* DENS_MAT & deltaEnergy, */
/* double dt); */
/* private: */
/* // DO NOT define this */
/* ThermostatFixedFiltered(); */
/* }; */
/* /\** */
/* * @class ThermostatFluxFixed */
/* * @brief Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another */
/* *\/ */
/* class ThermostatFluxFixed : public RegulatorMethod { */
/* public: */
/* ThermostatFluxFixed(Thermostat * thermostat, */
/* bool constructThermostats = true); */
/* virtual ~ThermostatFluxFixed(); */
/* /\** instantiate all needed data *\/ */
/* virtual void construct_transfers(); */
/* /\** pre-run initialization of method data *\/ */
/* virtual void initialize(); */
/* /\** applies thermostat to atoms in the predictor phase *\/ */
/* virtual void apply_pre_predictor(double dt); */
/* /\** applies thermostat to atoms in the pre-corrector phase *\/ */
/* virtual void apply_pre_corrector(double dt); */
/* /\** applies thermostat to atoms in the post-corrector phase *\/ */
/* virtual void apply_post_corrector(double dt); */
/* /\** get data for output *\/ */
/* virtual void output(OUTPUT_LIST & outputData); */
/* /\** compute boundary flux, requires thermostat input since it is part of the coupling scheme *\/ */
/* virtual void compute_boundary_flux(FIELDS & fields) */
/* {thermostatBcs_->compute_boundary_flux(fields);}; */
/* protected: */
/* // data */
/* /\** thermostat for imposing the fluxes *\/ */
/* ThermostatFlux * thermostatFlux_; */
/* /\** thermostat for imposing fixed nodes *\/ */
/* ThermostatFixed * thermostatFixed_; */
/* /\** pointer to whichever thermostat should compute the flux, based on coupling method *\/ */
/* ThermostatGlcFs * thermostatBcs_; */
/* private: */
/* // DO NOT define this */
/* ThermostatFluxFixed(); */
/* }; */
/* /\** */
/* * @class ThermostatFluxFixedFiltered */
/* * @brief Class for thermostatting using the temperature matching constraint one one set of nodes and the flux matching constraint on another with time filtering */
/* *\/ */
/* class ThermostatFluxFixedFiltered : public ThermostatFluxFixed { */
/* public: */
/* ThermostatFluxFixedFiltered(Thermostat * thermostat); */
/* virtual ~ThermostatFluxFixedFiltered(){}; */
/* private: */
/* // DO NOT define this */
/* ThermostatFluxFixedFiltered(); */
/* }; */
/* #endif */
};
#endif