lammps/lib/atc/FE_Interpolate.cpp

994 lines
35 KiB
C++

// ATC header files
#include "ATC_Error.h"
#include "FE_Element.h"
#include "FE_Interpolate.h"
#include "FE_Quadrature.h"
// Other headers
#include "math.h"
using std::map;
using std::vector;
namespace ATC {
FE_Interpolate::FE_Interpolate(FE_Element *feElement)
: feElement_(feElement),
nSD_(feElement->num_dims())
{
// Nothing to do here
}
FE_Interpolate::~FE_Interpolate()
{
if (!feQuadList_.empty()) {
map<FeIntQuadrature,FE_Quadrature *>::iterator qit;
for (qit = feQuadList_.begin();
qit != feQuadList_.end(); ++qit) {
delete (qit->second);
}
}
}
void FE_Interpolate::set_quadrature(FeEltGeometry geo,
FeIntQuadrature quad)
{
if (feQuadList_.count(quad) == 0) {
feQuad_ = new FE_Quadrature(geo,quad);
feQuadList_[quad] = feQuad_;
} else {
feQuad_ = feQuadList_[quad];
}
precalculate_shape_functions();
}
void FE_Interpolate::precalculate_shape_functions()
{
int numEltNodes = feElement_->num_elt_nodes();
int numFaces = feElement_->num_faces();
int numFaceNodes = feElement_->num_face_nodes();
int numIPs = feQuad_->numIPs;
DENS_MAT &ipCoords = feQuad_->ipCoords;
int numFaceIPs = feQuad_->numFaceIPs;
vector<DENS_MAT> &ipFaceCoords = feQuad_->ipFaceCoords;
DENS_MAT &ipFace2DCoords = feQuad_->ipFace2DCoords;
// Compute elemental shape functions at ips
N_.reset(numIPs,numEltNodes);
dNdr_.assign(numIPs,DENS_MAT(nSD_,numEltNodes));
for (int ip = 0; ip < numIPs; ip++) {
CLON_VEC thisIP = column(ipCoords,ip);
CLON_VEC thisN = row(N_,ip);
DENS_MAT &thisdNdr = dNdr_[ip];
compute_N(thisIP,thisN);
compute_N_dNdr(thisIP,thisN,thisdNdr);
}
// Compute face shape functions at ip's
NFace_.assign(numFaces,DENS_MAT(numFaceIPs,numEltNodes));
dNdrFace_.resize(numFaces);
for (int f = 0; f < numFaces; f++) {
dNdrFace_[f].assign(numIPs,DENS_MAT(nSD_,numEltNodes));
}
for (int f = 0; f < numFaces; f++) {
for (int ip = 0; ip < numFaceIPs; ip++) {
CLON_VEC thisIP = column(ipFaceCoords[f],ip);
CLON_VEC thisN = row(NFace_[f],ip);
DENS_MAT &thisdNdr = dNdrFace_[f][ip];
compute_N_dNdr(thisIP,thisN,thisdNdr);
}
}
// Compute 2D face shape function derivatives
dNdrFace2D_.assign(numFaceIPs,DENS_MAT(nSD_-1,numFaceNodes));
for (int ip = 0; ip < numFaceIPs; ip++) {
CLON_VEC thisIP = column(ipFace2DCoords,ip);
DENS_MAT &thisdNdr = dNdrFace2D_[ip];
compute_dNdr(thisIP,
numFaceNodes,nSD_-1,feElement_->face_area(),
thisdNdr);
}
}
//-----------------------------------------------------------------
// shape function value at a particular point given local coordinates
//-----------------------------------------------------------------
void FE_Interpolate::shape_function(const VECTOR &xi,
DENS_VEC &N)
{
int numEltNodes = feElement_->num_elt_nodes();
N.resize(numEltNodes);
compute_N(xi,N);
}
void FE_Interpolate::shape_function(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_VEC &N,
DENS_MAT &dNdx)
{
int numEltNodes = feElement_->num_elt_nodes();
N.resize(numEltNodes);
DENS_MAT dNdr(nSD_,numEltNodes,false);
compute_N_dNdr(xi,N,dNdr);
DENS_MAT eltCoordsT = transpose(eltCoords);
DENS_MAT dxdr, drdx;
dxdr = dNdr*eltCoordsT;
drdx = inv(dxdr);
dNdx = drdx*dNdr;
}
void FE_Interpolate::shape_function_derivatives(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_MAT &dNdx)
{
int numEltNodes = feElement_->num_elt_nodes();
DENS_MAT dNdr(nSD_,numEltNodes,false);
DENS_VEC N(numEltNodes);
compute_N_dNdr(xi,N,dNdr);
DENS_MAT eltCoordsT = transpose(eltCoords);
DENS_MAT dxdr, drdx;
dxdr = dNdr*eltCoordsT; // tangents or Jacobian matrix
drdx = inv(dxdr);
dNdx = drdx*dNdr; // dN/dx = dN/dxi (dx/dxi)^-1
}
void FE_Interpolate::tangents(const DENS_MAT &eltCoords,
const VECTOR &xi,
DENS_MAT &dxdr) const
{
int numEltNodes = feElement_->num_elt_nodes();
DENS_MAT dNdr(nSD_,numEltNodes,false);
DENS_VEC N(numEltNodes);
compute_N_dNdr(xi,N,dNdr);
//dNdr.print("dNdr");
DENS_MAT eltCoordsT = transpose(eltCoords);
//eltCoordsT.print("elt coords");
dxdr = dNdr*eltCoordsT;
//dxdr.print("dxdr");
}
void FE_Interpolate::tangents(const DENS_MAT &eltCoords,
const VECTOR &xi,
vector<DENS_VEC> & dxdxi,
const bool normalize) const
{
DENS_MAT dxdr;
tangents(eltCoords,xi,dxdr);
//dxdr.print("dxdr-post");
dxdxi.resize(nSD_);
//for (int i = 0; i < nSD_; ++i) dxdxi[i] = CLON_VEC(dxdr,CLONE_COL,i);
for (int i = 0; i < nSD_; ++i) {
dxdxi[i].resize(nSD_);
for (int j = 0; j < nSD_; ++j) {
dxdxi[i](j) = dxdr(i,j);
}
}
//dxdxi[0].print("t1");
//dxdxi[1].print("t2");
//dxdxi[2].print("t3");
if (normalize) {
for (int j = 0; j < nSD_; ++j) {
double norm = 0;
VECTOR & t = dxdxi[j];
for (int i = 0; i < nSD_; ++i) norm += t(i)*t(i);
norm = 1./sqrt(norm);
for (int i = 0; i < nSD_; ++i) t(i) *= norm;
}
}
}
// -------------------------------------------------------------
// shape_function values at nodes
// -------------------------------------------------------------
void FE_Interpolate::shape_function(const DENS_MAT &eltCoords,
DENS_MAT &N,
vector<DENS_MAT> &dN,
DIAG_MAT &weights)
{
int numEltNodes = feElement_->num_elt_nodes();
// Transpose eltCoords
DENS_MAT eltCoordsT(transpose(eltCoords));
// Shape functions are simply the canonical element values
N = N_;
// Set sizes of matrices and vectors
if ((int)dN.size() != nSD_) dN.resize(nSD_);
for (int isd = 0; isd < nSD_; isd++)
dN[isd].resize(feQuad_->numIPs,numEltNodes);
weights.resize(feQuad_->numIPs,feQuad_->numIPs);
// Create some temporary matrices:
// Jacobian matrix: [dx/dr dy/ds dz/dt | dx/ds ... ]
DENS_MAT dxdr, drdx, dNdx;
// Loop over integration points
for (int ip = 0; ip < feQuad_->numIPs; ip++) {
// Compute dx/dxi matrix
dxdr = dNdr_[ip]*eltCoordsT;
drdx = inv(dxdr);
// Compute dNdx and fill dN matrix
dNdx = drdx * dNdr_[ip];
for (int isd = 0; isd < nSD_; isd++)
for (int inode = 0; inode < numEltNodes; inode++)
dN[isd](ip,inode) = dNdx(isd,inode);
// Compute jacobian determinant of dxdr at this ip
double J = dxdr(0,0) * (dxdr(1,1)*dxdr(2,2) - dxdr(2,1)*dxdr(1,2))
- dxdr(0,1) * (dxdr(1,0)*dxdr(2,2) - dxdr(1,2)*dxdr(2,0))
+ dxdr(0,2) * (dxdr(1,0)*dxdr(2,1) - dxdr(1,1)*dxdr(2,0));
// Compute ip weight
weights(ip,ip) = feQuad_->ipWeights(ip)*J;
}
}
//-----------------------------------------------------------------
// shape functions on a given face
//-----------------------------------------------------------------
void FE_Interpolate::face_shape_function(const DENS_MAT &eltCoords,
const DENS_MAT &faceCoords,
const int faceID,
DENS_MAT &N,
DENS_MAT &n,
DIAG_MAT &weights)
{
int numFaceIPs = feQuad_->numFaceIPs;
// Transpose eltCoords
DENS_MAT eltCoordsT = transpose(eltCoords);
// Shape functions are simply the canonical element values
N = NFace_[faceID];
// Create some temporary matrices:
// Jacobian matrix: [dx/dr dy/ds dz/dt | dx/ds ... ]
DENS_MAT dxdr, drdx, dNdx;
// Loop over integration points
DENS_VEC normal(nSD_);
n.resize(nSD_,numFaceIPs);
weights.resize(numFaceIPs,numFaceIPs);
for (int ip = 0; ip < numFaceIPs; ip++) {
// Compute 2d jacobian determinant of dxdr at this ip
double J = face_normal(faceCoords,ip,normal);
// Copy normal at integration point
for (int isd = 0; isd < nSD_; isd++) {
n(isd,ip) = normal(isd);
}
// Compute ip weight
weights(ip,ip) = feQuad_->ipFaceWeights(ip)*J;
}
}
void FE_Interpolate::face_shape_function(const DENS_MAT &eltCoords,
const DENS_MAT &faceCoords,
const int faceID,
DENS_MAT &N,
vector<DENS_MAT> &dN,
vector<DENS_MAT> &Nn,
DIAG_MAT &weights)
{
int numEltNodes = feElement_->num_elt_nodes();
int numFaceIPs = feQuad_->numFaceIPs;
// Transpose eltCoords
DENS_MAT eltCoordsT = transpose(eltCoords);
// Shape functions are simply the canonical element values
N = NFace_[faceID];
// Set sizes of matrices and vectors
if ((int)dN.size() != nSD_) dN.resize(nSD_);
if ((int)Nn.size() != nSD_) Nn.resize(nSD_);
for (int isd = 0; isd < nSD_; isd++) {
dN[isd].resize(numFaceIPs,numEltNodes);
Nn[isd].resize(numFaceIPs,numEltNodes);
}
weights.resize(numFaceIPs,numFaceIPs);
// Create some temporary matrices:
// Jacobian matrix: [dx/dr dy/ds dz/dt | dx/ds ... ]
DENS_MAT dxdr, drdx, dNdx;
DENS_VEC normal(nSD_);
// Loop over integration points
for (int ip = 0; ip < numFaceIPs; ip++) {
// Compute dx/dxi matrix
dxdr = dNdrFace_[faceID][ip] * eltCoordsT;
drdx = inv(dxdr);
// Compute 2d jacobian determinant of dxdr at this ip
double J = face_normal(faceCoords,ip,normal);
// Compute dNdx and fill dN matrix
dNdx = drdx * dNdrFace_[faceID][ip];
for (int isd = 0; isd < nSD_; isd++) {
for (int inode = 0; inode < numEltNodes; inode++) {
dN[isd](ip,inode) = dNdx(isd,inode);
Nn[isd](ip,inode) = N(ip,inode)*normal(isd);
}
}
// Compute ip weight
weights(ip,ip) = feQuad_->ipFaceWeights(ip)*J;
}
}
// -------------------------------------------------------------
// face normal
// -------------------------------------------------------------
double FE_Interpolate::face_normal(const DENS_MAT &faceCoords,
int ip,
DENS_VEC &normal)
{
// Compute dx/dr for deformed element
DENS_MAT faceCoordsT = transpose(faceCoords);
DENS_MAT dxdr = dNdrFace2D_[ip]*faceCoordsT;
// Normal vector from cross product, hardcoded for 3D, sad
normal(0) = dxdr(0,1)*dxdr(1,2) - dxdr(0,2)*dxdr(1,1);
normal(1) = dxdr(0,2)*dxdr(1,0) - dxdr(0,0)*dxdr(1,2);
normal(2) = dxdr(0,0)*dxdr(1,1) - dxdr(0,1)*dxdr(1,0);
// Jacobian (3D)
double J = sqrt(normal(0)*normal(0) +
normal(1)*normal(1) +
normal(2)*normal(2));
double invJ = 1.0/J;
normal(0) *= invJ;
normal(1) *= invJ;
normal(2) *= invJ;
return J;
}
int FE_Interpolate::num_ips() const
{
return feQuad_->numIPs;
}
int FE_Interpolate::num_face_ips() const
{
return feQuad_->numFaceIPs;
}
/*********************************************************
* Class FE_InterpolateCartLagrange
*
* For computing Lagrange shape functions using Cartesian
* coordinate systems (all quads/hexes fall under this
* category, and any elements derived by degenerating
* them). Not to be used for serendipity elements, which
* should be implemented for SPEED.
*
*********************************************************/
FE_InterpolateCartLagrange::FE_InterpolateCartLagrange(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(HEXA,GAUSS2);
}
FE_InterpolateCartLagrange::~FE_InterpolateCartLagrange()
{
// Handled by base class
}
void FE_InterpolateCartLagrange::compute_N(const VECTOR &point,
VECTOR &N)
{
// *** see comments for compute_N_dNdr ***
const DENS_VEC &localCoords1d = feElement_->local_coords_1d();
int numEltNodes = feElement_->num_elt_nodes();
int numEltNodes1d = feElement_->num_elt_nodes_1d();
DENS_MAT lagrangeTerms(nSD_,numEltNodes1d);
DENS_MAT lagrangeDenom(nSD_,numEltNodes1d);
lagrangeTerms = 1.0;
lagrangeDenom = 1.0;
for (int iSD = 0; iSD < nSD_; ++iSD) {
for (int inode = 0; inode < numEltNodes1d; ++inode) {
for (int icont = 0; icont < numEltNodes1d; ++icont) {
if (inode != icont) {
lagrangeDenom(iSD,inode) *= (localCoords1d(inode) -
localCoords1d(icont));
lagrangeTerms(iSD,inode) *= (point(iSD)-localCoords1d(icont));
}
}
}
}
for (int iSD=0; iSD<nSD_; ++iSD) {
for (int inode=0; inode<numEltNodes1d; ++inode) {
lagrangeTerms(iSD,inode) /= lagrangeDenom(iSD,inode);
}
}
N = 1.0;
vector<int> mapping(nSD_);
for (int inode=0; inode<numEltNodes; ++inode) {
feElement_->mapping(inode,mapping);
for (int iSD=0; iSD<nSD_; ++iSD) {
N(inode) *= lagrangeTerms(iSD,mapping[iSD]);
}
}
}
// Sort of a test-ride for a generic version that can be used for
// faces too. The only thing that's not "generic" is localCoords,
// which very magically works in both cases.
void FE_InterpolateCartLagrange::compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double,
DENS_MAT &dNdr)
{
// *** see comments for compute_N_dNdr ***
const DENS_VEC &localCoords1d = feElement_->local_coords_1d();
int numEltNodes1d = feElement_->num_elt_nodes_1d();
DENS_MAT lagrangeTerms(nD,numEltNodes1d);
DENS_MAT lagrangeDenom(nD,numEltNodes1d);
DENS_MAT lagrangeDeriv(nD,numEltNodes1d);
lagrangeDenom = 1.0;
lagrangeTerms = 1.0;
lagrangeDeriv = 0.0;
DENS_VEC productRuleVec(numEltNodes1d);
productRuleVec = 1.0;
for (int iSD = 0; iSD < nD; ++iSD) {
for (int inode = 0; inode < numEltNodes1d; ++inode) {
for (int icont = 0; icont < numEltNodes1d; ++icont) {
if (inode != icont) {
lagrangeTerms(iSD,inode) *= (point(iSD)-localCoords1d(icont));
lagrangeDenom(iSD,inode) *= (localCoords1d(inode) -
localCoords1d(icont));
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
if (inode == dcont) {
productRuleVec(dcont) = 0.0;
} else if (icont == dcont) {
} else {
productRuleVec(dcont) *= (point(iSD)-localCoords1d(icont));
}
}
}
}
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
lagrangeDeriv(iSD,inode) += productRuleVec(dcont);
}
productRuleVec = 1.0;
}
}
for (int iSD=0; iSD<nD; ++iSD) {
for (int inode=0; inode<numEltNodes1d; ++inode) {
lagrangeTerms(iSD,inode) /= lagrangeDenom(iSD,inode);
lagrangeDeriv(iSD,inode) /= lagrangeDenom(iSD,inode);
}
}
dNdr = 1.0;
vector<int> mapping(nD);
for (int inode=0; inode<numNodes; ++inode) {
feElement_->mapping(inode,mapping);
for (int iSD=0; iSD<nD; ++iSD) {
for (int dSD=0; dSD<nD; ++dSD) {
if (iSD == dSD) {
dNdr(dSD,inode) *= lagrangeDeriv(iSD,mapping[iSD]);
} else {
dNdr(dSD,inode) *= lagrangeTerms(iSD,mapping[iSD]);
}
}
}
}
}
void FE_InterpolateCartLagrange::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
// Required data from element class
const DENS_VEC &localCoords1d = feElement_->local_coords_1d();
int numEltNodes = feElement_->num_elt_nodes();
int numEltNodes1d = feElement_->num_elt_nodes_1d();
// lagrangeTerms stores the numerator for the various Lagrange polynomials
// in one dimension, that will be used to produce the three dimensional
// shape functions
DENS_MAT lagrangeTerms(nSD_,numEltNodes1d);
// lagrangeDenom stores the denominator. Stored separately to reduce
// redundancy, because it will be used for the shape functions and derivs
DENS_MAT lagrangeDenom(nSD_,numEltNodes1d);
// lagrangeDeriv stores the numerator for the derivative of the Lagrange
// polynomials
DENS_MAT lagrangeDeriv(nSD_,numEltNodes1d);
// Terms/Denom are products, Deriv will be a sum, so initialize as such:
lagrangeTerms = 1.0;
lagrangeDenom = 1.0;
lagrangeDeriv = 0.0;
// the derivative requires use of the product rule; to store the prodcuts
// which make up the terms produced by the product rule, we'll use this
// vector
DENS_VEC productRuleVec(numEltNodes1d);
productRuleVec = 1.0;
for (int iSD = 0; iSD < nSD_; ++iSD) {
for (int inode = 0; inode < numEltNodes1d; ++inode) {
for (int icont = 0; icont < numEltNodes1d; ++icont) {
if (inode != icont) {
// each dimension and each 1d node per dimension has a
// contribution from all nodes besides the current node
lagrangeTerms(iSD,inode) *= (point(iSD)-localCoords1d(icont));
lagrangeDenom(iSD,inode) *= (localCoords1d(inode) -
localCoords1d(icont));
// complciated; each sum produced by the product rule has one
// "derivative", and the rest are just identical to the terms
// above
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
if (inode == dcont) {
// skip this term, derivative is 0
productRuleVec(dcont) = 0.0;
} else if (icont == dcont) {
// no numerator contribution, derivative is 1
} else {
// part of the "constant"
productRuleVec(dcont) *= (point(iSD)-localCoords1d(icont));
}
}
}
}
// sum the terms produced by the product rule and store in Deriv
for (int dcont=0; dcont<numEltNodes1d; ++dcont) {
lagrangeDeriv(iSD,inode) += productRuleVec(dcont);
}
productRuleVec = 1.0;
}
}
// divide by denom
for (int iSD=0; iSD<nSD_; ++iSD) {
for (int inode=0; inode<numEltNodes1d; ++inode) {
lagrangeTerms(iSD,inode) /= lagrangeDenom(iSD,inode);
lagrangeDeriv(iSD,inode) /= lagrangeDenom(iSD,inode);
}
}
N = 1.0;
dNdr = 1.0;
// mapping returns the 1d nodes in each dimension that sould be multiplied
// to achieve the shape functions in 3d
vector<int> mapping(nSD_);
for (int inode=0; inode<numEltNodes; ++inode) {
feElement_->mapping(inode,mapping);
for (int iSD=0; iSD<nSD_; ++iSD) {
N(inode) *= lagrangeTerms(iSD,mapping[iSD]);
for (int dSD=0; dSD<nSD_; ++dSD) {
// only use Deriv for the dimension in which we're taking the
// derivative, because the rest is essentially a "constant"
if (iSD == dSD) {
dNdr(dSD,inode) *= lagrangeDeriv(iSD,mapping[iSD]);
} else {
dNdr(dSD,inode) *= lagrangeTerms(iSD,mapping[iSD]);
}
}
}
}
}
/*********************************************************
* Class FE_InterpolateCartLin
*
* For computing linear shape functions using Cartesian
* coordinate systems (all quads/hexes fall under this
* category, and any elements derived by degenerating
* them).
*
*********************************************************/
FE_InterpolateCartLin::FE_InterpolateCartLin(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(HEXA,GAUSS2);
}
FE_InterpolateCartLin::~FE_InterpolateCartLin()
{
// Handled by base class
}
void FE_InterpolateCartLin::compute_N(const VECTOR &point,
VECTOR &N)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
for (int inode = 0; inode < numEltNodes; ++inode) {
N(inode) = invVol;
for (int isd = 0; isd < nSD_; ++isd) {
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
}
}
}
// Sort of a test-ride for a generic version that can be used for
// faces too. The only thing that's not "generic" is localCoords,
// which very magically works in both cases.
void FE_InterpolateCartLin::compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double vol,
DENS_MAT &dNdr)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/vol;
for (int inode = 0; inode < numNodes; ++inode) {
for (int idr = 0; idr < nD; ++idr) {
dNdr(idr,inode) = invVol;
}
for (int id = 0; id < nD; ++id) {
for (int idr = 0; idr < nD; ++idr) {
if (id == idr) dNdr(idr,inode) *= localCoords(id,inode);
else dNdr(idr,inode) *= 1.0 +
point(id)*localCoords(id,inode);
}
}
}
}
void FE_InterpolateCartLin::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
// Required data from element class
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
// Intiialize shape function and derivatives
N(inode) = invVol;
for (int idr = 0; idr < nSD_; ++idr) {
dNdr(idr,inode) = invVol;
}
for (int isd = 0; isd < nSD_; ++isd) {
// One term for each dimension
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
// One term for each dimension, only deriv in deriv's dimension
for (int idr = 0; idr < nSD_; ++idr) {
if (isd == idr) dNdr(idr,inode) *= localCoords(isd,inode);
else dNdr(idr,inode) *= 1.0 +
point(isd)*localCoords(isd,inode);
}
}
}
}
/*********************************************************
* Class FE_InterpolateCartSerendipity
*
* For computing shape functions for quadratic serendipity
* elements, implemented for SPEED.
*
*********************************************************/
FE_InterpolateCartSerendipity::FE_InterpolateCartSerendipity(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(HEXA,GAUSS2);
}
FE_InterpolateCartSerendipity::~FE_InterpolateCartSerendipity()
{
// Handled by base class
}
void FE_InterpolateCartSerendipity::compute_N(const VECTOR &point,
VECTOR &N)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
for (int inode = 0; inode < numEltNodes; ++inode) {
N(inode) = invVol;
for (int isd = 0; isd < nSD_; ++isd) {
if (((inode == 8 || inode == 10 || inode == 16 || inode == 18) &&
(isd == 0)) ||
((inode == 9 || inode == 11 || inode == 17 || inode == 19) &&
(isd == 1)) ||
((inode == 12 || inode == 13 || inode == 14 || inode == 15) &&
(isd == 2))) {
N(inode) *= (1.0 - pow(point(isd),2))*2;
} else {
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
}
}
if (inode < 8) {
N(inode) *= (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
}
}
}
// Sort of a test-ride for a generic version that can be used for
// faces too. The only thing that's not "generic" is localCoords,
// which very magically works in both cases.
void FE_InterpolateCartSerendipity::compute_dNdr(const VECTOR &point,
const int numNodes,
const int nD,
const double vol,
DENS_MAT &dNdr)
{
// *** see comments for compute_N_dNdr ***
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/vol;
bool serendipityNode = false;
double productRule1 = 0.0;
double productRule2 = 0.0;
if (nD != 3 && nD != 2) {
ATC_Error("Serendipity dNdr calculations are too hard-wired to do "
"what you want them to. Only 2D and 3D currently work.");
}
for (int inode = 0; inode < numNodes; ++inode) {
for (int idr = 0; idr < nD; ++idr) {
dNdr(idr,inode) = invVol;
}
for (int id = 0; id < nD; ++id) {
for (int idr = 0; idr < nD; ++idr) {
// identify nodes/dims differently if 3d or 2d case
if (nD == 3) {
serendipityNode =
(((inode == 8 || inode == 10 || inode == 16 || inode == 18) &&
(id == 0)) ||
((inode == 9 || inode == 11 || inode == 17 || inode == 19) &&
(id == 1)) ||
((inode == 12 || inode == 13 || inode == 14 || inode == 15) &&
(id == 2)));
} else if (nD == 2) {
serendipityNode =
(((inode == 4 || inode == 6) && (id == 0)) ||
((inode == 5 || inode == 7) && (id == 1)));
}
if (serendipityNode) {
if (id == idr) {
dNdr(idr,inode) *= point(id)*(-4);
} else {
dNdr(idr,inode) *= (1.0 - pow(point(id),2))*2;
}
} else {
if (id == idr) {
dNdr(idr,inode) *= localCoords(id,inode);
} else {
dNdr(idr,inode) *= (1.0 + point(id)*localCoords(id,inode));
}
}
}
}
for (int idr = 0; idr < nD; ++idr) {
if (inode < 8) {
// final corner contribution slightly different for 3d and 2d cases
if (nD == 3) {
productRule2 = (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
} else if (nD == 2) {
productRule2 = (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) - 1);
}
productRule1 = dNdr(idr,inode) *
(1 + point(idr)*localCoords(idr,inode));
productRule2 *= dNdr(idr,inode);
dNdr(idr,inode) = productRule1 + productRule2;
}
}
}
}
void FE_InterpolateCartSerendipity::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
// Required data from element class
const DENS_MAT &localCoords = feElement_->local_coords();
double invVol = 1.0/(feElement_->vol());
int numEltNodes = feElement_->num_elt_nodes();
// Will store terms for product rule derivative for dNdr
double productRule1;
double productRule2;
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
// Initialize shape functions and derivatives
N(inode) = invVol;
for (int idr = 0; idr < nSD_; ++idr) {
dNdr(idr,inode) = invVol;
}
// Add components from each dimension
for (int isd = 0; isd < nSD_; ++isd) {
for (int idr = 0; idr < nSD_; ++idr) {
// Check to see if the node is NOT a corner node, and if its
// "0-coordinate" is in the same dimension as the one we're currently
// iterating over. If that's the case, we want to contribute to its
// shape functions and derivatives in a modified way:
if (((inode == 8 || inode == 10 || inode == 16 || inode == 18) &&
(isd == 0)) ||
((inode == 9 || inode == 11 || inode == 17 || inode == 19) &&
(isd == 1)) ||
((inode == 12 || inode == 13 || inode == 14 || inode == 15) &&
(isd == 2))) {
// If the 1d shape function dimension matches the derivative
// dimension...
if (isd == idr) {
// contribute to N; sloppy, but this is the easiest way to get
// N to work right without adding extra, arguably unnecessary
// loops, while also computing the shape functions
N(inode) *= (1.0 - pow(point(isd),2))*2;
// contribute to dNdr with the derivative of this shape function
// contribution
dNdr(idr,inode) *= point(isd)*(-4);
} else {
// otherwise, just use the "constant" contribution to the deriv
dNdr(idr,inode) *= (1.0 - pow(point(isd),2))*2;
}
} else {
// non-serendipity style contributions
if (isd == idr) {
N(inode) *= (1.0 + point(isd)*localCoords(isd,inode));
dNdr(idr,inode) *= localCoords(isd,inode);
} else {
dNdr(idr,inode) *= (1.0 + point(isd)*localCoords(isd,inode));
}
}
}
}
// serendipity corner nodes require more extra handling
if (inode < 8) {
N(inode) *= (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
}
for (int idr = 0; idr < nSD_; ++idr) {
if (inode < 8) {
productRule1 = dNdr(idr,inode) *
(1 + point(idr)*localCoords(idr,inode));
productRule2 = dNdr(idr,inode) * (point(0)*localCoords(0,inode) +
point(1)*localCoords(1,inode) +
point(2)*localCoords(2,inode) - 2);
dNdr(idr,inode) = productRule1 + productRule2;
}
}
}
}
/*********************************************************
* Class FE_InterpolateSimpLin
*
* For computing linear shape functions of simplices,
* which are rather different from those computed
* in Cartesian coordinates.
*
* Note: degenerating quads/hexes can yield simplices
* as well, but this class is for computing these
* shape fucntions _natively_, in their own
* triangular/tetrahedral coordinate systems.
*
*********************************************************/
FE_InterpolateSimpLin::FE_InterpolateSimpLin(
FE_Element *feElement)
: FE_Interpolate(feElement)
{
set_quadrature(TETRA,GAUSS2);
}
FE_InterpolateSimpLin::~FE_InterpolateSimpLin()
{
// Handled by base class
}
void FE_InterpolateSimpLin::compute_N(const VECTOR &point,
VECTOR &N)
{
int numEltNodes = feElement_->num_elt_nodes();
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
if (inode == 0) {
// Fill N...the ips are serving as proxies for "dimensions"
// since we're in tetrahedral coordinates, except that
// 0th node = 3rd "dimension" (u or O_o)
// 1st node = 0th "dimension" (x or r)
// 2nd node = 1st "dimension" (y or s)
// 3rd node = 3nd "dimension" (z or t)
// and remember that u = 1 - r - s - t for tet coords
N(inode) = 1;
for (int icont = 0; icont < nSD_; ++icont) {
N(inode) -= point(icont);
}
} else {
N(inode) = point(inode-1);
}
}
}
void FE_InterpolateSimpLin::compute_dNdr(const VECTOR &,
const int numNodes,
const int nD,
const double,
DENS_MAT &dNdr)
{
// Fill in for each node
for (int inode = 0; inode < numNodes; ++inode) {
// Fill dNdr_; we want 1 if the dimension of derivative
// and variable within N correspond. That is, if N == r,
// we want the 0th dimension to contain (d/dr)r = 1. Of
// course, (d/di)r = 0 forall i != r, so we need that as
// well. This is a bit elusively complicated. Also, the 0th
// integration point contains the term u = 1 - r - s - t.
// (which map to x, y, and z). Therefore, the derivative in
// each dimension are -1.
//
// The idea is similar for 2 dimensions, which this can
// handle as well.
for (int idr = 0; idr < nD; ++idr) {
if (inode == 0) {
dNdr(idr,inode) = -1;
} else {
dNdr(idr,inode) = (inode == (idr + 1)) ? 1 : 0;
}
}
}
}
void FE_InterpolateSimpLin::compute_N_dNdr(const VECTOR &point,
VECTOR &N,
DENS_MAT &dNdr) const
{
int numEltNodes = feElement_->num_elt_nodes();
// Fill in for each node
for (int inode = 0; inode < numEltNodes; ++inode) {
// Fill N...
if (inode == 0) {
N(inode) = 1;
for (int icont = 0; icont < nSD_; ++icont) {
N(inode) -= point(icont);
}
} else {
N(inode) = point(inode-1);
}
// Fill dNdr...
for (int idr = 0; idr < nSD_; ++idr) {
if (inode == 0) {
dNdr(idr,inode) = -1;
} else {
dNdr(idr,inode) = (inode == (idr + 1)) ? 1 : 0;
}
}
}
}
} // namespace ATC