lammps/examples/COUPLE/fortran_dftb/README

38 lines
1.8 KiB
Plaintext

This directory has an example of using a callback function to obtain
forces from a fortran code for a LAMMPS simulation. The reader should
refer to the README file in COUPLE/fortran2 before proceeding. Here,
the LAMMPS.F90 file has been modified slightly and additional files
named LAMMPS-wrapper2.h and LAMMPS-wrapper2.cpp have been included in
order to supply wrapper functions to set the LAMMPS callback function,
total energy, virial, and electronic entropy contribution (needed for
MSST simulations with a quantum code).
In this example, the callback function is set to run the
semi-empirical quantum code DFTB+ in serial and then read in the total
energy, forces, and stress tensor from file. In this case, nlocal =
the total number of atoms in the system, so particle positions can be
read from the pos array directly, and DFTB+ forces can simply be
included via the fext array. The user should take care in the case of
a parallel calculation, where LAMMPS can assign different particules
to each processor. For example, the user should use functions such as
lammps_gather_atoms() and lammps_scatter_atoms() in the case where the
fortran force calculating code requires the positions of all atoms,
etc.
A few more important notes:
-Calling the subroutine lammps_set_callback() is required in order to set
a pointer to the callback function in LAMMPS.
-The subroutine lammps_set_user_energy() passes in the potential energy
from DFTB+ to LAMMPS. Similarly, lammps_set_user_virial passes the stress tensor.
-The electronic entropy contribution is set via lammps_set_external_vector(). Their needs
to be a call to lammps_set_external_vector_length() before this value can be
passed to LAMMPS.
This example was created by Nir Goldman, whom you can contact with
questions:
Nir Goldman, LLNL
ngoldman@llnl.gov