forked from lijiext/lammps
1332 lines
43 KiB
Python
1332 lines
43 KiB
Python
# Pizza.py toolkit, www.cs.sandia.gov/~sjplimp/pizza.html
|
|
# Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
|
#
|
|
# Copyright (2005) Sandia Corporation. Under the terms of Contract
|
|
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
# certain rights in this software. This software is distributed under
|
|
# the GNU General Public License.
|
|
|
|
# dump tool
|
|
|
|
oneline = "Read, write, manipulate dump files and particle attributes"
|
|
|
|
docstr = """
|
|
d = dump("dump.one") read in one or more dump files
|
|
d = dump("dump.1 dump.2.gz") can be gzipped
|
|
d = dump("dump.*") wildcard expands to multiple files
|
|
d = dump("dump.*",0) two args = store filenames, but don't read
|
|
|
|
incomplete and duplicate snapshots are deleted
|
|
atoms will be unscaled if stored in files as scaled
|
|
self-describing column names assigned
|
|
|
|
time = d.next() read next snapshot from dump files
|
|
|
|
used with 2-argument constructor to allow reading snapshots one-at-a-time
|
|
snapshot will be skipped only if another snapshot has same time stamp
|
|
return time stamp of snapshot read
|
|
return -1 if no snapshots left or last snapshot is incomplete
|
|
no column name assignment or unscaling is performed
|
|
|
|
d.map(1,"id",3,"x") assign names to columns (1-N)
|
|
|
|
not needed if dump file is self-describing
|
|
|
|
d.tselect.all() select all timesteps
|
|
d.tselect.one(N) select only timestep N
|
|
d.tselect.none() deselect all timesteps
|
|
d.tselect.skip(M) select every Mth step
|
|
d.tselect.test("$t >= 100 and $t < 10000") select matching timesteps
|
|
d.delete() delete non-selected timesteps
|
|
|
|
selecting a timestep also selects all atoms in the timestep
|
|
skip() and test() only select from currently selected timesteps
|
|
test() uses a Python Boolean expression with $t for timestep value
|
|
Python comparison syntax: == != < > <= >= and or
|
|
|
|
d.aselect.all() select all atoms in all steps
|
|
d.aselect.all(N) select all atoms in one step
|
|
d.aselect.test("$id > 100 and $type == 2") select match atoms in all steps
|
|
d.aselect.test("$id > 100 and $type == 2",N) select matching atoms in one step
|
|
|
|
all() with no args selects atoms from currently selected timesteps
|
|
test() with one arg selects atoms from currently selected timesteps
|
|
test() sub-selects from currently selected atoms
|
|
test() uses a Python Boolean expression with $ for atom attributes
|
|
Python comparison syntax: == != < > <= >= and or
|
|
$name must end with a space
|
|
|
|
d.write("file") write selected steps/atoms to dump file
|
|
d.write("file",head,app) write selected steps/atoms to dump file
|
|
d.scatter("tmp") write selected steps/atoms to multiple files
|
|
|
|
write() can be specified with 2 additional flags
|
|
head = 0/1 for no/yes snapshot header, app = 0/1 for write vs append
|
|
scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc
|
|
|
|
d.scale() scale x,y,z to 0-1 for all timesteps
|
|
d.scale(100) scale atom coords for timestep N
|
|
d.unscale() unscale x,y,z to box size to all timesteps
|
|
d.unscale(1000) unscale atom coords for timestep N
|
|
d.wrap() wrap x,y,z into periodic box via ix,iy,iz
|
|
d.unwrap() unwrap x,y,z out of box via ix,iy,iz
|
|
d.owrap("other") wrap x,y,z to same image as another atom
|
|
d.sort() sort atoms by atom ID in all selected steps
|
|
d.sort("x") sort atoms by column value in all steps
|
|
d.sort(1000) sort atoms in timestep N
|
|
|
|
scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
|
|
wrap(), unwrap(), owrap() require ix,iy,iz be defined
|
|
owrap() requires a column be defined which contains an atom ID
|
|
name of that column is the argument to owrap()
|
|
x,y,z for each atom is wrapped to same image as the associated atom ID
|
|
useful for wrapping all molecule's atoms the same so it is contiguous
|
|
|
|
m1,m2 = d.minmax("type") find min/max values for a column
|
|
d.set("$ke = $vx * $vx + $vy * $vy") set a column to a computed value
|
|
d.setv("type",vector) set a column to a vector of values
|
|
d.spread("ke",N,"color") 2nd col = N ints spread over 1st col
|
|
d.clone(1000,"color") clone timestep N values to other steps
|
|
|
|
minmax() operates on selected timesteps and atoms
|
|
set() operates on selected timesteps and atoms
|
|
left hand side column is created if necessary
|
|
left-hand side column is unset or unchanged for non-selected atoms
|
|
equation is in Python syntax
|
|
use $ for column names, $name must end with a space
|
|
setv() operates on selected timesteps and atoms
|
|
if column label does not exist, column is created
|
|
values in vector are assigned sequentially to atoms, so may want to sort()
|
|
length of vector must match # of selected atoms
|
|
spread() operates on selected timesteps and atoms
|
|
min and max are found for 1st specified column across all selected atoms
|
|
atom's value is linear mapping (1-N) between min and max
|
|
that is stored in 2nd column (created if needed)
|
|
useful for creating a color map
|
|
clone() operates on selected timesteps and atoms
|
|
values at every timestep are set to value at timestep N for that atom ID
|
|
useful for propagating a color map
|
|
|
|
t = d.time() return vector of selected timestep values
|
|
fx,fy,... = d.atom(100,"fx","fy",...) return vector(s) for atom ID N
|
|
fx,fy,... = d.vecs(1000,"fx","fy",...) return vector(s) for timestep N
|
|
|
|
atom() returns vectors with one value for each selected timestep
|
|
vecs() returns vectors with one value for each selected atom in the timestep
|
|
|
|
index,time,flag = d.iterator(0/1) loop over dump snapshots
|
|
time,box,atoms,bonds,tris,lines = d.viz(index) return list of viz objects
|
|
d.atype = "color" set column returned as "type" by viz
|
|
d.extra(obj) extract bond/tri/line info from obj
|
|
|
|
iterator() loops over selected timesteps
|
|
iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
|
|
index = index within dump object (0 to # of snapshots)
|
|
time = timestep value
|
|
flag = -1 when iteration is done, 1 otherwise
|
|
viz() returns info for selected atoms for specified timestep index
|
|
can also call as viz(time,1) and will find index of preceding snapshot
|
|
time = timestep value
|
|
box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
|
|
atoms = id,type,x,y,z for each atom as 2d array
|
|
bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
|
|
if extra() used to define bonds, else NULL
|
|
tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
|
|
if extra() used to define tris, else NULL
|
|
lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
|
|
if extra() used to define lines, else NULL
|
|
atype is column name viz() will return as atom type (def = "type")
|
|
extra() extracts bonds/tris/lines from obj each time viz() is called
|
|
obj can be data object for bonds, cdata object for tris and lines,
|
|
bdump object for bonds, tdump object for tris, ldump object for lines.
|
|
mdump object for tris
|
|
"""
|
|
|
|
# History
|
|
# 8/05, Steve Plimpton (SNL): original version
|
|
# 12/09, David Hart (SNL): allow use of NumPy or Numeric
|
|
|
|
# ToDo list
|
|
# try to optimize this line in read_snap: words += f.readline().split()
|
|
# allow $name in aselect.test() and set() to end with non-space
|
|
# should next() snapshot be auto-unscaled ?
|
|
|
|
# Variables
|
|
# flist = list of dump file names
|
|
# increment = 1 if reading snapshots one-at-a-time
|
|
# nextfile = which file to read from via next()
|
|
# eof = ptr into current file for where to read via next()
|
|
# scale_original = 0/1/-1 if coords were read in as unscaled/scaled/unknown
|
|
# nsnaps = # of snapshots
|
|
# nselect = # of selected snapshots
|
|
# snaps = list of snapshots
|
|
# names = dictionary of column names:
|
|
# key = "id", value = column # (0 to M-1)
|
|
# tselect = class for time selection
|
|
# aselect = class for atom selection
|
|
# atype = name of vector used as atom type by viz extract
|
|
# bondflag = 0 if no bonds, 1 if they are defined statically, 2 if dynamic
|
|
# bondlist = static list of bonds to return w/ viz() for all snapshots
|
|
# triflag = 0 if no tris, 1 if they are defined statically, 2 if dynamic
|
|
# trilist = static list of tris to return w/ viz() for all snapshots
|
|
# lineflag = 0 if no lines, 1 if they are defined statically, 2 if dynamic
|
|
# linelist = static list of lines to return w/ viz() for all snapshots
|
|
# objextra = object to get bonds,tris,lines from dynamically
|
|
# Snap = one snapshot
|
|
# time = time stamp
|
|
# tselect = 0/1 if this snapshot selected
|
|
# natoms = # of atoms
|
|
# boxstr = format string after BOX BOUNDS, if it exists
|
|
# triclinic = 0/1 for orthogonal/triclinic based on BOX BOUNDS fields
|
|
# nselect = # of selected atoms in this snapshot
|
|
# aselect[i] = 0/1 for each atom
|
|
# xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz = box bounds (float)
|
|
# atoms[i][j] = 2d array of floats, i = 0 to natoms-1, j = 0 to ncols-1
|
|
|
|
# Imports and external programs
|
|
|
|
import sys, commands, re, glob, types
|
|
from os import popen
|
|
from math import * # any function could be used by set()
|
|
|
|
try:
|
|
import numpy as np
|
|
oldnumeric = False
|
|
except:
|
|
import Numeric as np
|
|
oldnumeric = True
|
|
|
|
try: from DEFAULTS import PIZZA_GUNZIP
|
|
except: PIZZA_GUNZIP = "gunzip"
|
|
|
|
# Class definition
|
|
|
|
class dump:
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def __init__(self,*list):
|
|
self.snaps = []
|
|
self.nsnaps = self.nselect = 0
|
|
self.names = {}
|
|
self.tselect = tselect(self)
|
|
self.aselect = aselect(self)
|
|
self.atype = "type"
|
|
self.bondflag = 0
|
|
self.bondlist = []
|
|
self.triflag = 0
|
|
self.trilist = []
|
|
self.lineflag = 0
|
|
self.linelist = []
|
|
self.objextra = None
|
|
|
|
# flist = list of all dump file names
|
|
|
|
words = list[0].split()
|
|
self.flist = []
|
|
for word in words: self.flist += glob.glob(word)
|
|
if len(self.flist) == 0 and len(list) == 1:
|
|
raise StandardError,"no dump file specified"
|
|
|
|
if len(list) == 1:
|
|
self.increment = 0
|
|
self.read_all()
|
|
else:
|
|
self.increment = 1
|
|
self.nextfile = 0
|
|
self.eof = 0
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def read_all(self):
|
|
|
|
# read all snapshots from each file
|
|
# test for gzipped files
|
|
|
|
for file in self.flist:
|
|
if file[-3:] == ".gz":
|
|
f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r')
|
|
else: f = open(file)
|
|
|
|
snap = self.read_snapshot(f)
|
|
while snap:
|
|
self.snaps.append(snap)
|
|
print snap.time,
|
|
sys.stdout.flush()
|
|
snap = self.read_snapshot(f)
|
|
|
|
f.close()
|
|
print
|
|
|
|
# sort entries by timestep, cull duplicates
|
|
|
|
self.snaps.sort(self.compare_time)
|
|
self.cull()
|
|
self.nsnaps = len(self.snaps)
|
|
print "read %d snapshots" % self.nsnaps
|
|
|
|
# select all timesteps and atoms
|
|
|
|
self.tselect.all()
|
|
|
|
# print column assignments
|
|
|
|
if len(self.names):
|
|
print "assigned columns:",self.names2str()
|
|
else:
|
|
print "no column assignments made"
|
|
|
|
# if snapshots are scaled, unscale them
|
|
|
|
if (not self.names.has_key("x")) or \
|
|
(not self.names.has_key("y")) or \
|
|
(not self.names.has_key("z")):
|
|
print "dump scaling status is unknown"
|
|
elif self.nsnaps > 0:
|
|
if self.scale_original == 1: self.unscale()
|
|
elif self.scale_original == 0: print "dump is already unscaled"
|
|
else: print "dump scaling status is unknown"
|
|
|
|
# --------------------------------------------------------------------
|
|
# read next snapshot from list of files
|
|
|
|
def next(self):
|
|
|
|
if not self.increment: raise StandardError,"cannot read incrementally"
|
|
|
|
# read next snapshot in current file using eof as pointer
|
|
# if fail, try next file
|
|
# if new snapshot time stamp already exists, read next snapshot
|
|
|
|
while 1:
|
|
f = open(self.flist[self.nextfile],'rb')
|
|
f.seek(self.eof)
|
|
snap = self.read_snapshot(f)
|
|
if not snap:
|
|
self.nextfile += 1
|
|
if self.nextfile == len(self.flist): return -1
|
|
f.close()
|
|
self.eof = 0
|
|
continue
|
|
self.eof = f.tell()
|
|
f.close()
|
|
try:
|
|
self.findtime(snap.time)
|
|
continue
|
|
except: break
|
|
|
|
# select the new snapshot with all its atoms
|
|
|
|
self.snaps.append(snap)
|
|
snap = self.snaps[self.nsnaps]
|
|
snap.tselect = 1
|
|
snap.nselect = snap.natoms
|
|
for i in xrange(snap.natoms): snap.aselect[i] = 1
|
|
self.nsnaps += 1
|
|
self.nselect += 1
|
|
|
|
return snap.time
|
|
|
|
# --------------------------------------------------------------------
|
|
# read a single snapshot from file f
|
|
# return snapshot or 0 if failed
|
|
# for first snapshot only:
|
|
# assign column names (file must be self-describing)
|
|
# set scale_original to 0/1/-1 for unscaled/scaled/unknown
|
|
# convert xs,xu to x in names
|
|
|
|
def read_snapshot(self,f):
|
|
try:
|
|
snap = Snap()
|
|
item = f.readline()
|
|
snap.time = int(f.readline().split()[0]) # just grab 1st field
|
|
item = f.readline()
|
|
snap.natoms = int(f.readline())
|
|
|
|
snap.aselect = np.zeros(snap.natoms)
|
|
|
|
item = f.readline()
|
|
words = item.split("BOUNDS ")
|
|
if len(words) == 1: snap.boxstr = ""
|
|
else: snap.boxstr = words[1].strip()
|
|
if "xy" in snap.boxstr: snap.triclinic = 1
|
|
else: snap.triclinic = 0
|
|
|
|
words = f.readline().split()
|
|
if len(words) == 2:
|
|
snap.xlo,snap.xhi,snap.xy = float(words[0]),float(words[1]),0.0
|
|
else:
|
|
snap.xlo,snap.xhi,snap.xy = \
|
|
float(words[0]),float(words[1]),float(words[2])
|
|
|
|
words = f.readline().split()
|
|
if len(words) == 2:
|
|
snap.ylo,snap.yhi,snap.xz = float(words[0]),float(words[1]),0.0
|
|
else:
|
|
snap.ylo,snap.yhi,snap.xz = \
|
|
float(words[0]),float(words[1]),float(words[2])
|
|
|
|
words = f.readline().split()
|
|
if len(words) == 2:
|
|
snap.zlo,snap.zhi,snap.yz = float(words[0]),float(words[1]),0.0
|
|
else:
|
|
snap.zlo,snap.zhi,snap.yz = \
|
|
float(words[0]),float(words[1]),float(words[2])
|
|
|
|
item = f.readline()
|
|
if len(self.names) == 0:
|
|
self.scale_original = -1
|
|
xflag = yflag = zflag = -1
|
|
words = item.split()[2:]
|
|
if len(words):
|
|
for i in range(len(words)):
|
|
if words[i] == "x" or words[i] == "xu":
|
|
xflag = 0
|
|
self.names["x"] = i
|
|
elif words[i] == "xs" or words[i] == "xsu":
|
|
xflag = 1
|
|
self.names["x"] = i
|
|
elif words[i] == "y" or words[i] == "yu":
|
|
yflag = 0
|
|
self.names["y"] = i
|
|
elif words[i] == "ys" or words[i] == "ysu":
|
|
yflag = 1
|
|
self.names["y"] = i
|
|
elif words[i] == "z" or words[i] == "zu":
|
|
zflag = 0
|
|
self.names["z"] = i
|
|
elif words[i] == "zs" or words[i] == "zsu":
|
|
zflag = 1
|
|
self.names["z"] = i
|
|
else: self.names[words[i]] = i
|
|
if xflag == 0 and yflag == 0 and zflag == 0: self.scale_original = 0
|
|
if xflag == 1 and yflag == 1 and zflag == 1: self.scale_original = 1
|
|
|
|
if snap.natoms:
|
|
words = f.readline().split()
|
|
ncol = len(words)
|
|
for i in xrange(1,snap.natoms):
|
|
words += f.readline().split()
|
|
floats = map(float,words)
|
|
if oldnumeric: atoms = np.zeros((snap.natoms,ncol),np.Float)
|
|
else: atoms = np.zeros((snap.natoms,ncol),np.float)
|
|
start = 0
|
|
stop = ncol
|
|
for i in xrange(snap.natoms):
|
|
atoms[i] = floats[start:stop]
|
|
start = stop
|
|
stop += ncol
|
|
else: atoms = None
|
|
snap.atoms = atoms
|
|
return snap
|
|
except:
|
|
return 0
|
|
|
|
# --------------------------------------------------------------------
|
|
# map atom column names
|
|
|
|
def map(self,*pairs):
|
|
if len(pairs) % 2 != 0:
|
|
raise StandardError, "dump map() requires pairs of mappings"
|
|
for i in range(0,len(pairs),2):
|
|
j = i + 1
|
|
self.names[pairs[j]] = pairs[i]-1
|
|
|
|
# --------------------------------------------------------------------
|
|
# delete unselected snapshots
|
|
|
|
def delete(self):
|
|
ndel = i = 0
|
|
while i < self.nsnaps:
|
|
if not self.snaps[i].tselect:
|
|
del self.snaps[i]
|
|
self.nsnaps -= 1
|
|
ndel += 1
|
|
else: i += 1
|
|
print "%d snapshots deleted" % ndel
|
|
print "%d snapshots remaining" % self.nsnaps
|
|
|
|
# --------------------------------------------------------------------
|
|
# scale coords to 0-1 for all snapshots or just one
|
|
# use 6 params as h-matrix to treat orthongonal or triclinic boxes
|
|
|
|
def scale(self,*list):
|
|
if len(list) == 0:
|
|
print "Scaling dump ..."
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
for snap in self.snaps: self.scale_one(snap,x,y,z)
|
|
else:
|
|
i = self.findtime(list[0])
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
self.scale_one(self.snaps[i],x,y,z)
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def scale_one(self,snap,x,y,z):
|
|
if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0:
|
|
xprdinv = 1.0 / (snap.xhi - snap.xlo)
|
|
yprdinv = 1.0 / (snap.yhi - snap.ylo)
|
|
zprdinv = 1.0 / (snap.zhi - snap.zlo)
|
|
atoms = snap.atoms
|
|
if atoms != None:
|
|
atoms[:,x] = (atoms[:,x] - snap.xlo) * xprdinv
|
|
atoms[:,y] = (atoms[:,y] - snap.ylo) * yprdinv
|
|
atoms[:,z] = (atoms[:,z] - snap.zlo) * zprdinv
|
|
else:
|
|
xlo_bound = snap.xlo; xhi_bound = snap.xhi
|
|
ylo_bound = snap.ylo; yhi_bound = snap.yhi
|
|
zlo_bound = snap.zlo; zhi_bound = snap.zhi
|
|
xy = snap.xy
|
|
xz = snap.xz
|
|
yz = snap.yz
|
|
xlo = xlo_bound - min((0.0,xy,xz,xy+xz))
|
|
xhi = xhi_bound - max((0.0,xy,xz,xy+xz))
|
|
ylo = ylo_bound - min((0.0,yz))
|
|
yhi = yhi_bound - max((0.0,yz))
|
|
zlo = zlo_bound
|
|
zhi = zhi_bound
|
|
h0 = xhi - xlo
|
|
h1 = yhi - ylo
|
|
h2 = zhi - zlo
|
|
h3 = yz
|
|
h4 = xz
|
|
h5 = xy
|
|
h0inv = 1.0 / h0
|
|
h1inv = 1.0 / h1
|
|
h2inv = 1.0 / h2
|
|
h3inv = yz / (h1*h2)
|
|
h4inv = (h3*h5 - h1*h4) / (h0*h1*h2)
|
|
h5inv = xy / (h0*h1)
|
|
atoms = snap.atoms
|
|
if atoms != None:
|
|
atoms[:,x] = (atoms[:,x] - snap.xlo)*h0inv + \
|
|
(atoms[:,y] - snap.ylo)*h5inv + \
|
|
(atoms[:,z] - snap.zlo)*h4inv
|
|
atoms[:,y] = (atoms[:,y] - snap.ylo)*h1inv + \
|
|
(atoms[:,z] - snap.zlo)*h3inv
|
|
atoms[:,z] = (atoms[:,z] - snap.zlo)*h2inv
|
|
|
|
# --------------------------------------------------------------------
|
|
# unscale coords from 0-1 to box size for all snapshots or just one
|
|
# use 6 params as h-matrix to treat orthongonal or triclinic boxes
|
|
|
|
def unscale(self,*list):
|
|
if len(list) == 0:
|
|
print "Unscaling dump ..."
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
for snap in self.snaps: self.unscale_one(snap,x,y,z)
|
|
else:
|
|
i = self.findtime(list[0])
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
self.unscale_one(self.snaps[i],x,y,z)
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def unscale_one(self,snap,x,y,z):
|
|
if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0:
|
|
xprd = snap.xhi - snap.xlo
|
|
yprd = snap.yhi - snap.ylo
|
|
zprd = snap.zhi - snap.zlo
|
|
atoms = snap.atoms
|
|
if atoms != None:
|
|
atoms[:,x] = snap.xlo + atoms[:,x]*xprd
|
|
atoms[:,y] = snap.ylo + atoms[:,y]*yprd
|
|
atoms[:,z] = snap.zlo + atoms[:,z]*zprd
|
|
else:
|
|
xlo_bound = snap.xlo; xhi_bound = snap.xhi
|
|
ylo_bound = snap.ylo; yhi_bound = snap.yhi
|
|
zlo_bound = snap.zlo; zhi_bound = snap.zhi
|
|
xy = snap.xy
|
|
xz = snap.xz
|
|
yz = snap.yz
|
|
xlo = xlo_bound - min((0.0,xy,xz,xy+xz))
|
|
xhi = xhi_bound - max((0.0,xy,xz,xy+xz))
|
|
ylo = ylo_bound - min((0.0,yz))
|
|
yhi = yhi_bound - max((0.0,yz))
|
|
zlo = zlo_bound
|
|
zhi = zhi_bound
|
|
h0 = xhi - xlo
|
|
h1 = yhi - ylo
|
|
h2 = zhi - zlo
|
|
h3 = yz
|
|
h4 = xz
|
|
h5 = xy
|
|
atoms = snap.atoms
|
|
if atoms != None:
|
|
atoms[:,x] = snap.xlo + atoms[:,x]*h0 + atoms[:,y]*h5 + atoms[:,z]*h4
|
|
atoms[:,y] = snap.ylo + atoms[:,y]*h1 + atoms[:,z]*h3
|
|
atoms[:,z] = snap.zlo + atoms[:,z]*h2
|
|
|
|
# --------------------------------------------------------------------
|
|
# wrap coords from outside box to inside
|
|
|
|
def wrap(self):
|
|
print "Wrapping dump ..."
|
|
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
ix = self.names["ix"]
|
|
iy = self.names["iy"]
|
|
iz = self.names["iz"]
|
|
|
|
for snap in self.snaps:
|
|
xprd = snap.xhi - snap.xlo
|
|
yprd = snap.yhi - snap.ylo
|
|
zprd = snap.zhi - snap.zlo
|
|
atoms = snap.atoms
|
|
atoms[:,x] -= atoms[:,ix]*xprd
|
|
atoms[:,y] -= atoms[:,iy]*yprd
|
|
atoms[:,z] -= atoms[:,iz]*zprd
|
|
|
|
# --------------------------------------------------------------------
|
|
# unwrap coords from inside box to outside
|
|
|
|
def unwrap(self):
|
|
print "Unwrapping dump ..."
|
|
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
ix = self.names["ix"]
|
|
iy = self.names["iy"]
|
|
iz = self.names["iz"]
|
|
|
|
for snap in self.snaps:
|
|
xprd = snap.xhi - snap.xlo
|
|
yprd = snap.yhi - snap.ylo
|
|
zprd = snap.zhi - snap.zlo
|
|
atoms = snap.atoms
|
|
atoms[:,x] += atoms[:,ix]*xprd
|
|
atoms[:,y] += atoms[:,iy]*yprd
|
|
atoms[:,z] += atoms[:,iz]*zprd
|
|
|
|
# --------------------------------------------------------------------
|
|
# wrap coords to same image as atom ID stored in "other" column
|
|
# if dynamic extra lines or triangles defined, owrap them as well
|
|
|
|
def owrap(self,other):
|
|
print "Wrapping to other ..."
|
|
|
|
id = self.names["id"]
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
ix = self.names["ix"]
|
|
iy = self.names["iy"]
|
|
iz = self.names["iz"]
|
|
iother = self.names[other]
|
|
|
|
for snap in self.snaps:
|
|
xprd = snap.xhi - snap.xlo
|
|
yprd = snap.yhi - snap.ylo
|
|
zprd = snap.zhi - snap.zlo
|
|
atoms = snap.atoms
|
|
ids = {}
|
|
for i in xrange(snap.natoms):
|
|
ids[atoms[i][id]] = i
|
|
for i in xrange(snap.natoms):
|
|
j = ids[atoms[i][iother]]
|
|
atoms[i][x] += (atoms[i][ix]-atoms[j][ix])*xprd
|
|
atoms[i][y] += (atoms[i][iy]-atoms[j][iy])*yprd
|
|
atoms[i][z] += (atoms[i][iz]-atoms[j][iz])*zprd
|
|
# should bonds also be owrapped ?
|
|
if self.lineflag == 2 or self.triflag == 2:
|
|
self.objextra.owrap(snap.time,xprd,yprd,zprd,ids,atoms,iother,ix,iy,iz)
|
|
|
|
# --------------------------------------------------------------------
|
|
# convert column names assignment to a string, in column order
|
|
|
|
def names2str(self):
|
|
pairs = self.names.items()
|
|
values = self.names.values()
|
|
ncol = len(pairs)
|
|
str = ""
|
|
for i in xrange(ncol):
|
|
if i in values: str += pairs[values.index(i)][0] + ' '
|
|
return str
|
|
|
|
# --------------------------------------------------------------------
|
|
# sort atoms by atom ID in all selected timesteps by default
|
|
# if arg = string, sort all steps by that column
|
|
# if arg = numeric, sort atoms in single step
|
|
|
|
def sort(self,*list):
|
|
if len(list) == 0:
|
|
print "Sorting selected snapshots ..."
|
|
id = self.names["id"]
|
|
for snap in self.snaps:
|
|
if snap.tselect: self.sort_one(snap,id)
|
|
elif type(list[0]) is types.StringType:
|
|
print "Sorting selected snapshots by %s ..." % list[0]
|
|
id = self.names[list[0]]
|
|
for snap in self.snaps:
|
|
if snap.tselect: self.sort_one(snap,id)
|
|
else:
|
|
i = self.findtime(list[0])
|
|
id = self.names["id"]
|
|
self.sort_one(self.snaps[i],id)
|
|
|
|
# --------------------------------------------------------------------
|
|
# sort a single snapshot by ID column
|
|
|
|
def sort_one(self,snap,id):
|
|
atoms = snap.atoms
|
|
ids = atoms[:,id]
|
|
ordering = np.argsort(ids)
|
|
for i in xrange(len(atoms[0])):
|
|
atoms[:,i] = np.take(atoms[:,i],ordering)
|
|
|
|
# --------------------------------------------------------------------
|
|
# write a single dump file from current selection
|
|
|
|
def write(self,file,header=1,append=0):
|
|
if len(self.snaps): namestr = self.names2str()
|
|
if not append: f = open(file,"w")
|
|
else: f = open(file,"a")
|
|
|
|
if "id" in self.names: id = self.names["id"]
|
|
else: id = -1
|
|
if "type" in self.names: type = self.names["type"]
|
|
else: type = -1
|
|
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
print snap.time,
|
|
sys.stdout.flush()
|
|
|
|
if header:
|
|
print >>f,"ITEM: TIMESTEP"
|
|
print >>f,snap.time
|
|
print >>f,"ITEM: NUMBER OF ATOMS"
|
|
print >>f,snap.nselect
|
|
if snap.boxstr: print >>f,"ITEM: BOX BOUNDS",snap.boxstr
|
|
else: print >>f,"ITEM: BOX BOUNDS"
|
|
if snap.triclinic:
|
|
print >>f,snap.xlo,snap.xhi,snap.xy
|
|
print >>f,snap.ylo,snap.yhi,snap.xz
|
|
print >>f,snap.zlo,snap.zhi,snap.yz
|
|
else:
|
|
print >>f,snap.xlo,snap.xhi
|
|
print >>f,snap.ylo,snap.yhi
|
|
print >>f,snap.zlo,snap.zhi
|
|
print >>f,"ITEM: ATOMS",namestr
|
|
|
|
atoms = snap.atoms
|
|
nvalues = len(atoms[0])
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
line = ""
|
|
for j in xrange(nvalues):
|
|
if j == id or j == type:
|
|
line += str(int(atoms[i][j])) + " "
|
|
else:
|
|
line += str(atoms[i][j]) + " "
|
|
print >>f,line
|
|
f.close()
|
|
print "\n%d snapshots" % self.nselect
|
|
|
|
# --------------------------------------------------------------------
|
|
# write one dump file per snapshot from current selection
|
|
|
|
def scatter(self,root):
|
|
if len(self.snaps): namestr = self.names2str()
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
print snap.time,
|
|
sys.stdout.flush()
|
|
|
|
file = root + "." + str(snap.time)
|
|
f = open(file,"w")
|
|
print >>f,"ITEM: TIMESTEP"
|
|
print >>f,snap.time
|
|
print >>f,"ITEM: NUMBER OF ATOMS"
|
|
print >>f,snap.nselect
|
|
if snap.boxstr: print >>f,"ITEM: BOX BOUNDS",snap.boxstr
|
|
else: print >>f,"ITEM: BOX BOUNDS"
|
|
if snap.triclinic:
|
|
print >>f,snap.xlo,snap.xhi,snap.xy
|
|
print >>f,snap.ylo,snap.yhi,snap.xz
|
|
print >>f,snap.zlo,snap.zhi,snap.yz
|
|
else:
|
|
print >>f,snap.xlo,snap.xhi
|
|
print >>f,snap.ylo,snap.yhi
|
|
print >>f,snap.zlo,snap.zhi
|
|
print >>f,"ITEM: ATOMS",namestr
|
|
|
|
atoms = snap.atoms
|
|
nvalues = len(atoms[0])
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
line = ""
|
|
for j in xrange(nvalues):
|
|
if (j < 2):
|
|
line += str(int(atoms[i][j])) + " "
|
|
else:
|
|
line += str(atoms[i][j]) + " "
|
|
print >>f,line
|
|
f.close()
|
|
print "\n%d snapshots" % self.nselect
|
|
|
|
# --------------------------------------------------------------------
|
|
# find min/max across all selected snapshots/atoms for a particular column
|
|
|
|
def minmax(self,colname):
|
|
icol = self.names[colname]
|
|
min = 1.0e20
|
|
max = -min
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
atoms = snap.atoms
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
if atoms[i][icol] < min: min = atoms[i][icol]
|
|
if atoms[i][icol] > max: max = atoms[i][icol]
|
|
return (min,max)
|
|
|
|
# --------------------------------------------------------------------
|
|
# set a column value via an equation for all selected snapshots
|
|
|
|
def set(self,eq):
|
|
print "Setting ..."
|
|
pattern = "\$\w*"
|
|
list = re.findall(pattern,eq)
|
|
|
|
lhs = list[0][1:]
|
|
if not self.names.has_key(lhs):
|
|
self.newcolumn(lhs)
|
|
|
|
for item in list:
|
|
name = item[1:]
|
|
column = self.names[name]
|
|
insert = "snap.atoms[i][%d]" % (column)
|
|
eq = eq.replace(item,insert)
|
|
ceq = compile(eq,'','single')
|
|
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
for i in xrange(snap.natoms):
|
|
if snap.aselect[i]: exec ceq
|
|
|
|
# --------------------------------------------------------------------
|
|
# set a column value via an input vec for all selected snapshots/atoms
|
|
|
|
def setv(self,colname,vec):
|
|
print "Setting ..."
|
|
if not self.names.has_key(colname):
|
|
self.newcolumn(colname)
|
|
icol = self.names[colname]
|
|
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
if snap.nselect != len(vec):
|
|
raise StandardError,"vec length does not match # of selected atoms"
|
|
atoms = snap.atoms
|
|
m = 0
|
|
for i in xrange(snap.natoms):
|
|
if snap.aselect[i]:
|
|
atoms[i][icol] = vec[m]
|
|
m += 1
|
|
|
|
# --------------------------------------------------------------------
|
|
# clone value in col across selected timesteps for atoms with same ID
|
|
|
|
def clone(self,nstep,col):
|
|
istep = self.findtime(nstep)
|
|
icol = self.names[col]
|
|
id = self.names["id"]
|
|
ids = {}
|
|
for i in xrange(self.snaps[istep].natoms):
|
|
ids[self.snaps[istep].atoms[i][id]] = i
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
atoms = snap.atoms
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
j = ids[atoms[i][id]]
|
|
atoms[i][icol] = self.snaps[istep].atoms[j][icol]
|
|
|
|
# --------------------------------------------------------------------
|
|
# values in old column are spread as ints from 1-N and assigned to new column
|
|
|
|
def spread(self,old,n,new):
|
|
iold = self.names[old]
|
|
if not self.names.has_key(new): self.newcolumn(new)
|
|
inew = self.names[new]
|
|
|
|
min,max = self.minmax(old)
|
|
print "min/max = ",min,max
|
|
|
|
gap = max - min
|
|
invdelta = n/gap
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
atoms = snap.atoms
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
ivalue = int((atoms[i][iold] - min) * invdelta) + 1
|
|
if ivalue > n: ivalue = n
|
|
if ivalue < 1: ivalue = 1
|
|
atoms[i][inew] = ivalue
|
|
|
|
# --------------------------------------------------------------------
|
|
# return vector of selected snapshot time stamps
|
|
|
|
def time(self):
|
|
vec = self.nselect * [0]
|
|
i = 0
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
vec[i] = snap.time
|
|
i += 1
|
|
return vec
|
|
|
|
# --------------------------------------------------------------------
|
|
# extract vector(s) of values for atom ID n at each selected timestep
|
|
|
|
def atom(self,n,*list):
|
|
if len(list) == 0:
|
|
raise StandardError, "no columns specified"
|
|
columns = []
|
|
values = []
|
|
for name in list:
|
|
columns.append(self.names[name])
|
|
values.append(self.nselect * [0])
|
|
ncol = len(columns)
|
|
|
|
id = self.names["id"]
|
|
m = 0
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
atoms = snap.atoms
|
|
for i in xrange(snap.natoms):
|
|
if atoms[i][id] == n: break
|
|
if atoms[i][id] != n:
|
|
raise StandardError, "could not find atom ID in snapshot"
|
|
for j in xrange(ncol):
|
|
values[j][m] = atoms[i][columns[j]]
|
|
m += 1
|
|
|
|
if len(list) == 1: return values[0]
|
|
else: return values
|
|
|
|
# --------------------------------------------------------------------
|
|
# extract vector(s) of values for selected atoms at chosen timestep
|
|
|
|
def vecs(self,n,*list):
|
|
snap = self.snaps[self.findtime(n)]
|
|
|
|
if len(list) == 0:
|
|
raise StandardError, "no columns specified"
|
|
columns = []
|
|
values = []
|
|
for name in list:
|
|
columns.append(self.names[name])
|
|
values.append(snap.nselect * [0])
|
|
ncol = len(columns)
|
|
|
|
m = 0
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
for j in xrange(ncol):
|
|
values[j][m] = snap.atoms[i][columns[j]]
|
|
m += 1
|
|
|
|
if len(list) == 1: return values[0]
|
|
else: return values
|
|
|
|
# --------------------------------------------------------------------
|
|
# add a new column to every snapshot and set value to 0
|
|
# set the name of the column to str
|
|
|
|
def newcolumn(self,str):
|
|
ncol = len(self.snaps[0].atoms[0])
|
|
self.map(ncol+1,str)
|
|
for snap in self.snaps:
|
|
atoms = snap.atoms
|
|
if oldnumeric: newatoms = np.zeros((snap.natoms,ncol+1),np.Float)
|
|
else: newatoms = np.zeros((snap.natoms,ncol+1),np.float)
|
|
newatoms[:,0:ncol] = snap.atoms
|
|
snap.atoms = newatoms
|
|
|
|
# --------------------------------------------------------------------
|
|
# sort snapshots on time stamp
|
|
|
|
def compare_time(self,a,b):
|
|
if a.time < b.time:
|
|
return -1
|
|
elif a.time > b.time:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
# --------------------------------------------------------------------
|
|
# delete successive snapshots with duplicate time stamp
|
|
|
|
def cull(self):
|
|
i = 1
|
|
while i < len(self.snaps):
|
|
if self.snaps[i].time == self.snaps[i-1].time:
|
|
del self.snaps[i]
|
|
else:
|
|
i += 1
|
|
|
|
# --------------------------------------------------------------------
|
|
# iterate over selected snapshots
|
|
|
|
def iterator(self,flag):
|
|
start = 0
|
|
if flag: start = self.iterate + 1
|
|
for i in xrange(start,self.nsnaps):
|
|
if self.snaps[i].tselect:
|
|
self.iterate = i
|
|
return i,self.snaps[i].time,1
|
|
return 0,0,-1
|
|
|
|
# --------------------------------------------------------------------
|
|
# return list of atoms to viz for snapshot isnap
|
|
# if called with flag, then index is timestep, so convert to snapshot index
|
|
# augment with bonds, tris, lines if extra() was invoked
|
|
|
|
def viz(self,index,flag=0):
|
|
if not flag: isnap = index
|
|
else:
|
|
times = self.time()
|
|
n = len(times)
|
|
i = 0
|
|
while i < n:
|
|
if times[i] > index: break
|
|
i += 1
|
|
isnap = i - 1
|
|
|
|
snap = self.snaps[isnap]
|
|
|
|
time = snap.time
|
|
box = [snap.xlo,snap.ylo,snap.zlo,snap.xhi,snap.yhi,snap.zhi]
|
|
id = self.names["id"]
|
|
type = self.names[self.atype]
|
|
x = self.names["x"]
|
|
y = self.names["y"]
|
|
z = self.names["z"]
|
|
|
|
# create atom list needed by viz from id,type,x,y,z
|
|
# need Numeric/Numpy mode here
|
|
|
|
atoms = []
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
atom = snap.atoms[i]
|
|
atoms.append([atom[id],atom[type],atom[x],atom[y],atom[z]])
|
|
|
|
# create list of bonds from static or dynamic bond list
|
|
# then generate bond coords from bondlist
|
|
# alist = dictionary of atom IDs for atoms list
|
|
# lookup bond atom IDs in alist and grab their coords
|
|
# try is used since some atoms may be unselected
|
|
# any bond with unselected atom is not added to bonds
|
|
# need Numeric/Numpy mode here
|
|
|
|
bonds = []
|
|
if self.bondflag:
|
|
if self.bondflag == 1: bondlist = self.bondlist
|
|
elif self.bondflag == 2:
|
|
tmp1,tmp2,tmp3,bondlist,tmp4,tmp5 = self.objextra.viz(time,1)
|
|
alist = {}
|
|
for i in xrange(len(atoms)): alist[int(atoms[i][0])] = i
|
|
for bond in bondlist:
|
|
try:
|
|
i = alist[bond[2]]
|
|
j = alist[bond[3]]
|
|
atom1 = atoms[i]
|
|
atom2 = atoms[j]
|
|
bonds.append([bond[0],bond[1],atom1[2],atom1[3],atom1[4],
|
|
atom2[2],atom2[3],atom2[4],atom1[1],atom2[1]])
|
|
except: continue
|
|
|
|
# create list of tris from static or dynamic tri list
|
|
# if dynamic, could eliminate tris for unselected atoms
|
|
|
|
tris = []
|
|
if self.triflag:
|
|
if self.triflag == 1: tris = self.trilist
|
|
elif self.triflag == 2:
|
|
tmp1,tmp2,tmp3,tmp4,tris,tmp5 = self.objextra.viz(time,1)
|
|
|
|
# create list of lines from static or dynamic tri list
|
|
# if dynamic, could eliminate lines for unselected atoms
|
|
|
|
lines = []
|
|
if self.lineflag:
|
|
if self.lineflag == 1: lines = self.linelist
|
|
elif self.lineflag == 2:
|
|
tmp1,tmp2,tmp3,tmp4,tmp5,lines = self.objextra.viz(time,1)
|
|
|
|
return time,box,atoms,bonds,tris,lines
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def findtime(self,n):
|
|
for i in xrange(self.nsnaps):
|
|
if self.snaps[i].time == n: return i
|
|
raise StandardError, "no step %d exists" % n
|
|
|
|
# --------------------------------------------------------------------
|
|
# return maximum box size across all selected snapshots
|
|
|
|
def maxbox(self):
|
|
xlo = ylo = zlo = None
|
|
xhi = yhi = zhi = None
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
if xlo == None or snap.xlo < xlo: xlo = snap.xlo
|
|
if xhi == None or snap.xhi > xhi: xhi = snap.xhi
|
|
if ylo == None or snap.ylo < ylo: ylo = snap.ylo
|
|
if yhi == None or snap.yhi > yhi: yhi = snap.yhi
|
|
if zlo == None or snap.zlo < zlo: zlo = snap.zlo
|
|
if zhi == None or snap.zhi > zhi: zhi = snap.zhi
|
|
return [xlo,ylo,zlo,xhi,yhi,zhi]
|
|
|
|
# --------------------------------------------------------------------
|
|
# return maximum atom type across all selected snapshots and atoms
|
|
|
|
def maxtype(self):
|
|
icol = self.names["type"]
|
|
max = 0
|
|
for snap in self.snaps:
|
|
if not snap.tselect: continue
|
|
atoms = snap.atoms
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
if atoms[i][icol] > max: max = atoms[i][icol]
|
|
return int(max)
|
|
|
|
# --------------------------------------------------------------------
|
|
# grab bonds/tris/lines from another object
|
|
# if static, grab once, else store obj to grab dynamically
|
|
|
|
def extra(self,arg):
|
|
|
|
# data object, grab bonds statically
|
|
|
|
if type(arg) is types.InstanceType and ".data" in str(arg.__class__):
|
|
self.bondflag = 0
|
|
try:
|
|
bondlist = []
|
|
bondlines = arg.sections["Bonds"]
|
|
for line in bondlines:
|
|
words = line.split()
|
|
bondlist.append([int(words[0]),int(words[1]),
|
|
int(words[2]),int(words[3])])
|
|
if bondlist:
|
|
self.bondflag = 1
|
|
self.bondlist = bondlist
|
|
except:
|
|
raise StandardError,"could not extract bonds from data object"
|
|
|
|
# cdata object, grab tris and lines statically
|
|
|
|
elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__):
|
|
self.triflag = self.lineflag = 0
|
|
try:
|
|
tmp,tmp,tmp,tmp,tris,lines = arg.viz(0)
|
|
if tris:
|
|
self.triflag = 1
|
|
self.trilist = tris
|
|
if lines:
|
|
self.lineflag = 1
|
|
self.linelist = lines
|
|
except:
|
|
raise StandardError,"could not extract tris/lines from cdata object"
|
|
|
|
# mdump object, grab tris dynamically
|
|
|
|
elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__):
|
|
self.triflag = 2
|
|
self.objextra = arg
|
|
|
|
# bdump object, grab bonds dynamically
|
|
|
|
elif type(arg) is types.InstanceType and ".bdump" in str(arg.__class__):
|
|
self.bondflag = 2
|
|
self.objextra = arg
|
|
|
|
# ldump object, grab lines dynamically
|
|
|
|
elif type(arg) is types.InstanceType and ".ldump" in str(arg.__class__):
|
|
self.lineflag = 2
|
|
self.objextra = arg
|
|
|
|
# tdump object, grab tris dynamically
|
|
|
|
elif type(arg) is types.InstanceType and ".tdump" in str(arg.__class__):
|
|
self.triflag = 2
|
|
self.objextra = arg
|
|
|
|
else:
|
|
raise StandardError,"unrecognized argument to dump.extra()"
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def compare_atom(self,a,b):
|
|
if a[0] < b[0]:
|
|
return -1
|
|
elif a[0] > b[0]:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
# --------------------------------------------------------------------
|
|
# one snapshot
|
|
|
|
class Snap:
|
|
pass
|
|
|
|
# --------------------------------------------------------------------
|
|
# time selection class
|
|
|
|
class tselect:
|
|
|
|
def __init__(self,data):
|
|
self.data = data
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def all(self):
|
|
data = self.data
|
|
for snap in data.snaps:
|
|
snap.tselect = 1
|
|
data.nselect = len(data.snaps)
|
|
data.aselect.all()
|
|
print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def one(self,n):
|
|
data = self.data
|
|
for snap in data.snaps:
|
|
snap.tselect = 0
|
|
i = data.findtime(n)
|
|
data.snaps[i].tselect = 1
|
|
data.nselect = 1
|
|
data.aselect.all()
|
|
print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def none(self):
|
|
data = self.data
|
|
for snap in data.snaps:
|
|
snap.tselect = 0
|
|
data.nselect = 0
|
|
print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def skip(self,n):
|
|
data = self.data
|
|
count = n-1
|
|
for snap in data.snaps:
|
|
if not snap.tselect: continue
|
|
count += 1
|
|
if count == n:
|
|
count = 0
|
|
continue
|
|
snap.tselect = 0
|
|
data.nselect -= 1
|
|
data.aselect.all()
|
|
print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def test(self,teststr):
|
|
data = self.data
|
|
snaps = data.snaps
|
|
cmd = "flag = " + teststr.replace("$t","snaps[i].time")
|
|
ccmd = compile(cmd,'','single')
|
|
for i in xrange(data.nsnaps):
|
|
if not snaps[i].tselect: continue
|
|
exec ccmd
|
|
if not flag:
|
|
snaps[i].tselect = 0
|
|
data.nselect -= 1
|
|
data.aselect.all()
|
|
print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
|
|
|
|
# --------------------------------------------------------------------
|
|
# atom selection class
|
|
|
|
class aselect:
|
|
|
|
def __init__(self,data):
|
|
self.data = data
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def all(self,*args):
|
|
data = self.data
|
|
if len(args) == 0: # all selected timesteps
|
|
for snap in data.snaps:
|
|
if not snap.tselect: continue
|
|
for i in xrange(snap.natoms): snap.aselect[i] = 1
|
|
snap.nselect = snap.natoms
|
|
else: # one timestep
|
|
n = data.findtime(args[0])
|
|
snap = data.snaps[n]
|
|
for i in xrange(snap.natoms): snap.aselect[i] = 1
|
|
snap.nselect = snap.natoms
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def test(self,teststr,*args):
|
|
data = self.data
|
|
|
|
# replace all $var with snap.atoms references and compile test string
|
|
|
|
pattern = "\$\w*"
|
|
list = re.findall(pattern,teststr)
|
|
for item in list:
|
|
name = item[1:]
|
|
column = data.names[name]
|
|
insert = "snap.atoms[i][%d]" % column
|
|
teststr = teststr.replace(item,insert)
|
|
cmd = "flag = " + teststr
|
|
ccmd = compile(cmd,'','single')
|
|
|
|
if len(args) == 0: # all selected timesteps
|
|
for snap in data.snaps:
|
|
if not snap.tselect: continue
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
exec ccmd
|
|
if not flag:
|
|
snap.aselect[i] = 0
|
|
snap.nselect -= 1
|
|
for i in xrange(data.nsnaps):
|
|
if data.snaps[i].tselect:
|
|
print "%d atoms of %d selected in first step %d" % \
|
|
(data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time)
|
|
break
|
|
for i in xrange(data.nsnaps-1,-1,-1):
|
|
if data.snaps[i].tselect:
|
|
print "%d atoms of %d selected in last step %d" % \
|
|
(data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time)
|
|
break
|
|
|
|
else: # one timestep
|
|
n = data.findtime(args[0])
|
|
snap = data.snaps[n]
|
|
for i in xrange(snap.natoms):
|
|
if not snap.aselect[i]: continue
|
|
exec ccmd
|
|
if not flag:
|
|
snap.aselect[i] = 0
|
|
snap.nselect -= 1
|