lammps/lib/gpu/lal_sw_ext.cpp

132 lines
4.9 KiB
C++

/***************************************************************************
sw_ext.cpp
-------------------
W. Michael Brown (ORNL)
Functions for LAMMPS access to sw acceleration routines.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : Tue March 26, 2013
email : brownw@ornl.gov
***************************************************************************/
#include <iostream>
#include <cassert>
#include <math.h>
#include "lal_sw.h"
using namespace std;
using namespace LAMMPS_AL;
static SW<PRECISION,ACC_PRECISION> SWMF;
// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
int sw_gpu_init(const int ntypes, const int inum, const int nall, const int max_nbors,
const double cell_size, int &gpu_mode, FILE *screen,
int* host_map, const int nelements, int*** host_elem2param, const int nparams,
const double* sw_epsilon, const double* sw_sigma,
const double* sw_lambda, const double* sw_gamma,
const double* sw_costheta, const double* sw_biga,
const double* sw_bigb, const double* sw_powerp,
const double* sw_powerq, const double* sw_cut,
const double* sw_cutsq) {
SWMF.clear();
gpu_mode=SWMF.device->gpu_mode();
double gpu_split=SWMF.device->particle_split();
int first_gpu=SWMF.device->first_device();
int last_gpu=SWMF.device->last_device();
int world_me=SWMF.device->world_me();
int gpu_rank=SWMF.device->gpu_rank();
int procs_per_gpu=SWMF.device->procs_per_gpu();
// disable host/device split for now
if (gpu_split != 1.0)
return -8;
SWMF.device->init_message(screen,"sw/gpu",first_gpu,last_gpu);
bool message=false;
if (SWMF.device->replica_me()==0 && screen)
message=true;
if (message) {
fprintf(screen,"Initializing Device and compiling on process 0...");
fflush(screen);
}
int init_ok=0;
if (world_me==0)
init_ok=SWMF.init(ntypes, inum, nall, 300, cell_size, gpu_split, screen,
host_map, nelements, host_elem2param, nparams,
sw_epsilon, sw_sigma, sw_lambda, sw_gamma, sw_costheta,
sw_biga, sw_bigb, sw_powerp, sw_powerq, sw_cut, sw_cutsq);
SWMF.device->world_barrier();
if (message)
fprintf(screen,"Done.\n");
for (int i=0; i<procs_per_gpu; i++) {
if (message) {
if (last_gpu-first_gpu==0)
fprintf(screen,"Initializing Device %d on core %d...",first_gpu,i);
else
fprintf(screen,"Initializing Devices %d-%d on core %d...",first_gpu,
last_gpu,i);
fflush(screen);
}
if (gpu_rank==i && world_me!=0)
init_ok=SWMF.init(ntypes, inum, nall, 300, cell_size, gpu_split, screen,
host_map, nelements, host_elem2param, nparams,
sw_epsilon, sw_sigma, sw_lambda, sw_gamma, sw_costheta,
sw_biga, sw_bigb, sw_powerp, sw_powerq, sw_cut,
sw_cutsq);
SWMF.device->gpu_barrier();
if (message)
fprintf(screen,"Done.\n");
}
if (message)
fprintf(screen,"\n");
if (init_ok==0)
SWMF.estimate_gpu_overhead();
return init_ok;
}
void sw_gpu_clear() {
SWMF.clear();
}
int ** sw_gpu_compute_n(const int ago, const int inum_full,
const int nall, double **host_x, int *host_type,
double *sublo, double *subhi, tagint *tag, int **nspecial,
tagint **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum, const double cpu_time,
bool &success) {
return SWMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
subhi, tag, nspecial, special, eflag, vflag, eatom,
vatom, host_start, ilist, jnum, cpu_time, success);
}
void sw_gpu_compute(const int ago, const int nlocal, const int nall,
const int nlist, double **host_x, int *host_type,
int *ilist, int *numj, int **firstneigh, const bool eflag,
const bool vflag, const bool eatom, const bool vatom,
int &host_start, const double cpu_time, bool &success) {
SWMF.compute(ago,nlocal,nall,nlist,host_x,host_type,ilist,numj,
firstneigh,eflag,vflag,eatom,vatom,host_start,cpu_time,success);
}
double sw_gpu_bytes() {
return SWMF.host_memory_usage();
}