lammps/lib/gpu/lal_yukawa_colloid.h

123 lines
4.0 KiB
C++

/***************************************************************************
yukawa_colloid.h
-------------------
Trung Dac Nguyen (ORNL)
Class for acceleration of the yukawa/colloid pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : nguyentd@ornl.gov
***************************************************************************/
#ifndef LAL_YUKAWA_COLLOID_H
#define LAL_YUKAWA_COLLOID_H
#include "lal_base_atomic.h"
namespace LAMMPS_AL {
template <class numtyp, class acctyp>
class YukawaColloid : public BaseAtomic<numtyp, acctyp> {
public:
YukawaColloid();
~YukawaColloid();
/// Clear any previous data and set up for a new LAMMPS run
/** \param max_nbors initial number of rows in the neighbor matrix
* \param cell_size cutoff + skin
* \param gpu_split fraction of particles handled by device
*
* Returns:
* - 0 if successfull
* - -1 if fix gpu not found
* - -3 if there is an out of memory error
* - -4 if the GPU library was not compiled for GPU
* - -5 Double precision is not supported on card **/
int init(const int ntypes, double **host_cutsq,
double **host_a, double **host_offset, double *host_special_lj,
const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const double cell_size,
const double gpu_split, FILE *screen, const double kappa);
inline void cast_rad_data(double* rad) {
int nall = this->atom->nall();
if (_shared_view) {
c_rad.host.view((numtyp*)rad,nall,*(this->ucl_device));
c_rad.device.view(c_rad.host);
} else {
if (sizeof(numtyp)==sizeof(double))
memcpy(c_rad.host.begin(),rad,nall*sizeof(numtyp));
else
for (int i=0; i<nall; i++) c_rad[i]=rad[i];
}
}
// Copy rad to device asynchronously
inline void add_rad_data() {
c_rad.update_device(this->atom->nall(),true);
}
/// Clear all host and device data
/** \note This is called at the beginning of the init() routine **/
void clear();
/// Returns memory usage on device per atom
int bytes_per_atom(const int max_nbors) const;
/// Total host memory used by library for pair style
double host_memory_usage() const;
/// Pair loop with host neighboring
void compute(const int f_ago, const int inum_full,
const int nall, double **host_x, int *host_type,
int *ilist, int *numj, int **firstneigh,
const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success, double *rad);
/// Pair loop with device neighboring
int** compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, double *sublo,
double *subhi, tagint *tag, int **nspecial,
tagint **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum, const double cpu_time,
bool &success, double *rad);
// --------------------------- TEXTURES -----------------------------
UCL_Texture rad_tex;
// --------------------------- TYPE DATA --------------------------
/// coeff.x = a, coeff.y = offset, coeff.z = cutsq
UCL_D_Vec<numtyp4> coeff;
/// Special LJ values
UCL_D_Vec<numtyp> sp_lj;
/// If atom type constants fit in shared memory, use fast kernels
bool shared_types;
/// Number of atom types
int _lj_types;
int _max_rad_size;
numtyp _kappa;
/// Per-atom arrays
UCL_Vector<numtyp,numtyp> c_rad;
private:
bool _shared_view;
bool _allocated;
void loop(const bool _eflag, const bool _vflag);
};
}
#endif