forked from lijiext/lammps
151 lines
3.3 KiB
C++
151 lines
3.3 KiB
C++
//*****************************************************************
|
|
// Iterative template routine -- GMRES
|
|
//
|
|
// GMRES solves the unsymmetric linear system Ax = b using the
|
|
// Generalized Minimum Residual method
|
|
//
|
|
// GMRES follows the algorithm described on p. 20 of the
|
|
// SIAM Templates book.
|
|
//
|
|
// The return value indicates convergence within max_iter (input)
|
|
// iterations (0), or no convergence within max_iter iterations (1).
|
|
//
|
|
// Upon successful return, output arguments have the following values:
|
|
//
|
|
// x -- approximate solution to Ax = b
|
|
// max_iter -- the number of iterations performed before the
|
|
// tolerance was reached
|
|
// tol -- the residual after the final iteration
|
|
//
|
|
//*****************************************************************
|
|
|
|
|
|
template < class Matrix, class Vector >
|
|
void
|
|
Update(Vector &x, int k, Matrix &h, Vector &s, Vector v[])
|
|
{
|
|
Vector y(s);
|
|
|
|
// Backsolve:
|
|
for (int i = k; i >= 0; i--) {
|
|
y(i) /= h(i,i);
|
|
for (int j = i - 1; j >= 0; j--)
|
|
y(j) -= h(j,i) * y(i);
|
|
}
|
|
|
|
for (int j = 0; j <= k; j++)
|
|
x += v[j] * y(j);
|
|
}
|
|
|
|
|
|
template < class Real >
|
|
Real
|
|
abs(Real x)
|
|
{
|
|
return (x > 0 ? x : -x);
|
|
}
|
|
|
|
|
|
template < class Operator, class Vector, class Preconditioner,
|
|
class Matrix, class Real >
|
|
int
|
|
GMRES(const Operator &A, Vector &x, const Vector &b,
|
|
const Preconditioner &M, Matrix &H, int &m, int &max_iter,
|
|
Real &tol)
|
|
{
|
|
Real resid;
|
|
int i, j = 1, k;
|
|
Vector s(m+1), cs(m+1), sn(m+1), w;
|
|
|
|
Vector p = inv(M)*b;
|
|
Real normb = p.norm();
|
|
Vector r = inv(M) * (b - A * x);
|
|
Real beta = r.norm();
|
|
|
|
if (normb == 0.0)
|
|
normb = 1;
|
|
|
|
if ((resid = r.norm() / normb) <= tol) {
|
|
tol = resid;
|
|
max_iter = 0;
|
|
return 0;
|
|
}
|
|
|
|
Vector *v = new Vector[m+1];
|
|
|
|
while (j <= max_iter) {
|
|
v[0] = r * (1.0 / beta); // ??? r / beta
|
|
s = 0.0;
|
|
s(0) = beta;
|
|
|
|
for (i = 0; i < m && j <= max_iter; i++, j++) {
|
|
w = inv(M) * (A * v[i]);
|
|
for (k = 0; k <= i; k++) {
|
|
H(k, i) = w.dot(v[k]);
|
|
w -= H(k, i) * v[k];
|
|
}
|
|
H(i+1, i) = w.norm();
|
|
v[i+1] = w * (1.0 / H(i+1, i)); // ??? w / H(i+1, i)
|
|
|
|
for (k = 0; k < i; k++)
|
|
ApplyPlaneRotation(H(k,i), H(k+1,i), cs(k), sn(k));
|
|
|
|
GeneratePlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
|
|
ApplyPlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
|
|
ApplyPlaneRotation(s(i), s(i+1), cs(i), sn(i));
|
|
|
|
if ((resid = abs(s(i+1)) / normb) < tol) {
|
|
Update(x, i, H, s, v);
|
|
tol = resid;
|
|
max_iter = j;
|
|
delete [] v;
|
|
return 0;
|
|
}
|
|
}
|
|
Update(x, m - 1, H, s, v);
|
|
r = inv(M) * (b - A * x);
|
|
beta = r.norm();
|
|
if ((resid = beta / normb) < tol) {
|
|
tol = resid;
|
|
max_iter = j;
|
|
delete [] v;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
tol = resid;
|
|
delete [] v;
|
|
return 1;
|
|
}
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
template<class Real>
|
|
void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
|
|
{
|
|
if (dy == 0.0) {
|
|
cs = 1.0;
|
|
sn = 0.0;
|
|
} else if (abs(dy) > abs(dx)) {
|
|
Real temp = dx / dy;
|
|
sn = 1.0 / sqrt( 1.0 + temp*temp );
|
|
cs = temp * sn;
|
|
} else {
|
|
Real temp = dy / dx;
|
|
cs = 1.0 / sqrt( 1.0 + temp*temp );
|
|
sn = temp * cs;
|
|
}
|
|
}
|
|
|
|
|
|
template<class Real>
|
|
void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
|
|
{
|
|
Real temp = cs * dx + sn * dy;
|
|
dy = -sn * dx + cs * dy;
|
|
dx = temp;
|
|
}
|
|
|