lammps/lib/atc/TimeFilter.h

781 lines
31 KiB
C++

// The type of filter used should be determined by the
// integrator since filtering much match the time integration scheme
#ifndef TIME_FILTER_H
#define TIME_FILTER_H
#include <set>
#include "ATC_TypeDefs.h"
#include "MatrixLibrary.h"
#include "ATC_Error.h"
namespace ATC {
// forward declarations
class ATC_Method;
class TimeFilter;
/**
* @class TimeFilterManager
* @brief Handles parsing and parameter storage for time filters
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterManager
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterManager {
public:
/** enumeration for the functional form underlying the filter */
enum TimeFilterType {
NO_FILTER=0, // default
EXPONENTIAL_FILTER,
STEP_FILTER
};
/** enumeration for the functional form underlying the filter */
enum FilterIntegrationType {
INSTANTANEOUS=0, //default
CRANK_NICHOLSON,
IMPLICIT_EXPLICIT,
EXPLICIT_IMPLICIT,
EXPLICIT,
IMPLICIT,
IMPLICIT_UPDATE
};
// constructor
TimeFilterManager(ATC_Method * atc);
// destructor
~TimeFilterManager();
/** parser/modifier */
bool modify(int narg, char **arg);
/** pre time integration */
void initialize();
/** get filter base function */
TimeFilterType filter_type() const {return filterType_;};
/** return filtering time scale */
double filter_scale() const {return filterScale_;};
/** check if dynamics should be filtering */
bool filter_dynamics() const {return useFilter_;};
/** check if variables should be filtered */
bool filter_variables() const {return (useFilter_ || equilibrateFilter_);};
/** flag for if reset is needed */
bool need_reset() const {return needReset_;};
/** flag if ending equilibration */
bool end_equilibrate() const {return endEquilibrate_;};
/** get pointer to ATC transfer methods */
ATC_Method * atc() {return atc_;};
/** construct the appropriate time filter */
TimeFilter * construct(const FilterIntegrationType type = CRANK_NICHOLSON);
protected:
TimeFilterManager(){};
/** pointer to access ATC methods */
ATC_Method * atc_;
/** description of underlying function form of filter */
TimeFilterType filterType_;
/** filtering time scale */
double filterScale_;
/** flag to see if filtering is active */
bool useFilter_;
/** flag to see if we are equilibrating the filtered variables */
bool equilibrateFilter_;
/** flag to reset data */
bool needReset_;
/** flag to denote switch from equilibration to integration */
bool endEquilibrate_;
/** set to store all time filters for later deletion */
std::set<TimeFilter * > timeFilterSet_;
};
/**
* @class TimeFilter
* @brief Base class for various temporal filters of atomistic quantities
* default behavior is no filter
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilter
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilter {
public:
// constructor
TimeFilter(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilter(){};
/** pre time integration */
virtual void initialize(){};
/** pre time integration with a target for an initial condition */
virtual void initialize(const MATRIX & /* target */){initialize();};
/** Step 1:
apply first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & /* filteredQuantity */,
const MATRIX & unFilteredQuantity,
double /* dt */)
{ TimeFilter::unFilteredQuantityOld_ = unFilteredQuantity;}
/** Step 2:
apply second step in a time filter update in pre integration phase */
virtual void apply_pre_step2(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** Step 3:
apply first step in a time filter update in post integration phase */
virtual void apply_post_step1(MATRIX & filteredQuantity,
const MATRIX & unFilteredQuantity,
double /* dt */)
{ filteredQuantity = unFilteredQuantity;};
/** Step 4:
apply second step in a time filter update in post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
const MATRIX & unFilteredQuantity,
double /* dt */)
{ filteredQuantity = unFilteredQuantity;}
/** coefficient multipling unfiltered terms in apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double /* dt */){return 0.;};
/** coefficient multipling old filtered terms in apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double /* dt */){return 0.;};
/** coefficient multipling unfiltered terms in apply_post_step1 method */
virtual double unfiltered_coefficient_post_s1(double /* dt */){return 0.;};
/** coefficient multipling old filtered terms in apply_post_step1 method */
virtual double filtered_coefficient_post_s1(double /* dt */){return 0.;};
/** coefficient multipling unfiltered terms in apply_pre_step2 method */
virtual double unfiltered_coefficient_pre_s2(double /* dt */){return 0.;};
/** coefficient multipling old filtered terms in apply_pre_step2 method */
virtual double filtered_coefficient_pre_s2(double /* dt */){return 0.;};
/** coefficient multipling unfiltered terms in apply_post_step2 method */
virtual double unfiltered_coefficient_post_s2(double /* dt */){return 0.;};
/** coefficient multipling old filtered terms in apply_post_step2 method */
virtual double filtered_coefficient_post_s2(double /* dt */){return 0.;};
/** rate of filtered quantity to be called in post integration phase */
virtual void rate(MATRIX & rate,
const MATRIX & /* filteredQuantity */,
const MATRIX & unFilteredQuantity,
double dt = 0.0)
{ rate = 1/dt*(unFilteredQuantity - TimeFilter::unFilteredQuantityOld_);};
protected:
TimeFilter(){};
/** pointer to access ATC methods */
ATC_Method * atc_;
/** filtering time scale */
double filterScale_;
/** filter type */
TimeFilterManager::TimeFilterType filterType_;
/** member data to track old unfiltered values */
DENS_MAT unFilteredQuantityOld_;
};
/**
* @class TimeFilterExponential
* @brief Base class for filters using an exponential kernel,
* derived classes implement specific integration schemes
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterExponential
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterExponential : public TimeFilter {
public:
// constructor
TimeFilterExponential(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterExponential(){};
/** apply first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** apply second step in a time filter update in pre integration phase */
virtual void apply_pre_step2(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** apply first step in a time filter update in post integration phase */
virtual void apply_post_step1(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** apply second step in a time filter update in post integration phase */
virtual void apply_post_step2(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** time rate of filtered quantity */
virtual void rate(MATRIX & rate,
const MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
double /* dt */)
{ double tau = TimeFilter::filterScale_;
rate = 1/tau*(unfilteredQuantity - filteredQuantity); };
virtual void rate(MATRIX & rate,
const MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity)
{ double tau = TimeFilter::filterScale_;
rate = 1/tau*(unfilteredQuantity - filteredQuantity); };
protected:
TimeFilterExponential(){};
//--------------------------------------------------------
//--------------------------------------------------------
// filter integration functions not associated
// with any particular class
//--------------------------------------------------------
//--------------------------------------------------------
void update_filter(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
MATRIX & unfilteredQuantityOld,
double tau,
double dt)
{
filteredQuantity *= 1./(1./dt+1./(2*tau))*((1./dt-1./(2*tau)));
filteredQuantity += 1./(1./dt+1./(2*tau))*( 1./(2*tau)*(unfilteredQuantity+unfilteredQuantityOld));
unfilteredQuantityOld = unfilteredQuantity;
}
void add_to_filter(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
MATRIX & unfilteredQuantityOld,
double tau,
double dt)
{
filteredQuantity += 1./(1./dt+1./(2.*tau))*( 1./(2.*tau))*unfilteredQuantity;
unfilteredQuantityOld += unfilteredQuantity;
};
double unfiltered_coef(double tau, double dt)
{ return 1./(1./dt+1./(2.*tau))*( 1./(2.*tau)); };
double filtered_coef(double tau, double dt)
{ return 1./(1./dt+1./(2.*tau))*( 1./dt-1./(2*tau) ); };
void update_filter_implicit(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
double tau,
double dt)
{
filteredQuantity /= 1.0 + dt/tau;
filteredQuantity += (dt)/(tau+dt)*unfilteredQuantity;
}
void add_to_filter_implicit(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
double tau,
double dt)
{ filteredQuantity += (1./(1.+dt/tau))*(dt/tau)*unfilteredQuantity; };
double unfiltered_coef_implicit(double tau, double dt)
{ return (1./(1.+dt/tau))*(dt/tau); };
double filtered_coef_implicit(double tau, double dt)
{ return (1./(1.+dt/tau)); };
void update_filter_explicit(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
double tau,
double dt)
{
filteredQuantity *= (1.-(dt/tau));
filteredQuantity += (dt/tau)*unfilteredQuantity;
}
void add_to_filter_explicit(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
double tau,
double dt)
{ filteredQuantity += (dt/tau)*unfilteredQuantity; };
double unfiltered_coef_explicit(double tau, double dt)
{ return (dt/tau); };
double filtered_coef_explicit(double tau, double dt)
{ return (1.-(dt/tau)); };
};
/**
* @class TimeFilterCrankNicolson
* @brief Time Filter using Crank-Nicolson advancement of filtered quantity ODE's
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterCrankNicolson
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterCrankNicolson : public TimeFilterExponential {
public:
// constructor
TimeFilterCrankNicolson(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterCrankNicolson(){};
/** pre time integration */
virtual void initialize(){throw ATC_Error("TimeFilterCrankNicolson::initialize() an initial condition is required for this time filter");};
/** pre time integration with an initial condition */
virtual void initialize(const MATRIX & target);
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter(filteredQuantity,unFilteredQuantity,unFilteredQuantityOld_,TimeFilter::filterScale_,dt); };
/** applies first step in a time filter update after the pre integration phase */
virtual void apply_post_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ add_to_filter(filteredQuantity,unFilteredQuantity,unFilteredQuantityOld_,TimeFilter::filterScale_,dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter(filteredQuantity,unFilteredQuantity,unFilteredQuantityOld_,TimeFilter::filterScale_,dt); };
/** return coefficient multipling unfiltered terms in the apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double dt){return unfiltered_coef(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double dt){return filtered_coef(TimeFilter::filterScale_,dt);};
/** return coefficient multipling unfiltered terms in the apply_post_step2 method */
virtual double unfiltered_coefficient_post_s2(double dt){return unfiltered_coef(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_post_step2 method */
virtual double filtered_coefficient_post_s2(double dt){return filtered_coef(TimeFilter::filterScale_,dt);};
protected:
TimeFilterCrankNicolson();
};
/**
* @class TimeFilterExplicit
* @brief Time Filter using explicit advancement of filtered quantity ODE's
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterExplicit
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterExplicit : public TimeFilterExponential {
public:
// constructor
TimeFilterExplicit(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterExplicit(){};
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{update_filter_explicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** applies first step in a time filter update after the pre integration phase */
virtual void apply_post_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ add_to_filter_explicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_explicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** return coefficient multipling unfiltered terms in the apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double dt){return unfiltered_coef_explicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double dt){return filtered_coef_explicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling unfiltered terms in the apply_post_step2 method */
virtual double unfiltered_coefficient_post_s2(double dt){return unfiltered_coef_explicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_post_step2 method */
virtual double filtered_coefficient_post_s2(double dt){return filtered_coef_explicit(TimeFilter::filterScale_,dt);};
protected:
TimeFilterExplicit();
};
/**
* @class TimeFilterImplicit
* @brief Time Filter using implicit advancement of filtered quantity ODE's
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterImplicit
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterImplicit : public TimeFilterExponential {
public:
// constructor
TimeFilterImplicit(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterImplicit(){};
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** return coefficient multipling unfiltered terms in the apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double dt){return unfiltered_coef_implicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double dt){return filtered_coef_implicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling unfiltered terms in the apply_post_step2 method */
virtual double unfiltered_coefficient_post_s2(double dt){return unfiltered_coef_implicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_post_step2 method */
virtual double filtered_coefficient_post_s2(double dt){return filtered_coef_implicit(TimeFilter::filterScale_,dt);};
protected:
TimeFilterImplicit();
};
/**
* @class TimeFilterImplicitExplicit
* @brief Time Filter using two-step implicit/explicit advancement of filtered quantity ODE's
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterImplicitExplicit
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterImplicitExplicit : public TimeFilterExponential {
public:
// constructor
TimeFilterImplicitExplicit(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterImplicitExplicit(){};
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,0.5*dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_explicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,0.5*dt); };
/** return coefficient multipling unfiltered terms in the apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double dt){return unfiltered_coef_implicit(TimeFilter::filterScale_,0.5*dt);};
/** return coefficient multipling old filtered terms in the apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double dt){return filtered_coef_implicit(TimeFilter::filterScale_,0.5*dt);};
/** return coefficient multipling unfiltered terms in the apply_post_step2 method */
virtual double unfiltered_coefficient_post_s2(double dt){return unfiltered_coef_explicit(TimeFilter::filterScale_,0.5*dt);};
/** return coefficient multipling old filtered terms in the apply_post_step2 method */
virtual double filtered_coefficient_post_s2(double dt){return filtered_coef_explicit(TimeFilter::filterScale_,0.5*dt);};
protected:
TimeFilterImplicitExplicit();
};
/**
* @class TimeFilterExplicitImplicit
* @brief Time Filter using two-step explicit/implicit advancement of filtered quantity ODE's
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterExplicitImplicit
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterExplicitImplicit : public TimeFilterExponential {
public:
// constructor
TimeFilterExplicitImplicit(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterExplicitImplicit(){};
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_explicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,0.5*dt); };
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step2(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ add_to_filter_explicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,0.5*dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,0.5*dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ add_to_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,0.5*dt); };
/** return coefficient multipling unfiltered terms in the apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double dt){return unfiltered_coef_explicit(TimeFilter::filterScale_,0.5*dt);};
/** return coefficient multipling old filtered terms in the apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double dt){return filtered_coef_explicit(TimeFilter::filterScale_,0.5*dt);};
/** return coefficient multipling unfiltered terms in the apply_post_step2 method */
virtual double unfiltered_coefficient_post_s1(double dt){return unfiltered_coef_implicit(TimeFilter::filterScale_,0.5*dt);};
/** return coefficient multipling old filtered terms in the apply_post_step2 method */
virtual double filtered_coefficient_post_s1(double dt){return filtered_coef_implicit(TimeFilter::filterScale_,0.5*dt);};
protected:
TimeFilterExplicitImplicit();
};
/**
* @class TimeFilterImplicitUpdate
* @brief Time Filter using implicit advancement of filtered quantity ODE's but adds on contribution at the end of the second step
*/
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterImplicitUpdate
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterImplicitUpdate : public TimeFilterExponential {
public:
// constructor
TimeFilterImplicitUpdate(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterImplicitUpdate(){};
/** applies first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ update_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** applies second step in a time filter update in the post integration phase */
virtual void apply_post_step1(MATRIX & filteredQuantity,
MATRIX const & unFilteredQuantity,
double dt)
{ add_to_filter_implicit(filteredQuantity,unFilteredQuantity,TimeFilter::filterScale_,dt); };
/** return coefficient multipling unfiltered terms in the apply_pre_step1 method */
virtual double unfiltered_coefficient_pre_s1(double dt){return unfiltered_coef_implicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_pre_step1 method */
virtual double filtered_coefficient_pre_s1(double dt){return filtered_coef_implicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling unfiltered terms in the apply_post_step2 method */
virtual double unfiltered_coefficient_post_s1(double dt){return unfiltered_coef_implicit(TimeFilter::filterScale_,dt);};
/** return coefficient multipling old filtered terms in the apply_post_step2 method */
virtual double filtered_coefficient_post_s1(double dt){return filtered_coef_implicit(TimeFilter::filterScale_,dt);};
protected:
TimeFilterImplicitUpdate();
};
//--------------------------------------------------------
//--------------------------------------------------------
// Class TimeFilterStep
//--------------------------------------------------------
//--------------------------------------------------------
class TimeFilterStep : public TimeFilter {
public:
// constructor
TimeFilterStep(TimeFilterManager & timeFilterManager);
// destructor
virtual ~TimeFilterStep(){};
/** pre time integration */
virtual void initialize(const MATRIX & target);
/** apply first step in a time filter update in the pre integration phase */
virtual void apply_pre_step1(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** apply second step in a time filter update in pre integration phase */
virtual void apply_pre_step2(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** apply first step in a time filter update in post integration phase */
virtual void apply_post_step1(MATRIX & /* filteredQuantity */,
const MATRIX & /* unFilteredQuantity */,
double /* dt */) {};
/** apply second step in a time filter update in post integration phase */
virtual void apply_post_step2(MATRIX & filteredQuantity,
const MATRIX & unFilteredQuantity,
double dt)
{ update_filter(filteredQuantity, unFilteredQuantity,
TimeFilter::unFilteredQuantityOld_, TimeFilter::filterScale_, dt);
}
/** time rate of filtered quantity */
virtual void rate(MATRIX & rate,
const MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
double /* dt */)
{ rate = 1/elapsedTime_*(unfilteredQuantity - filteredQuantity); }
virtual void rate(MATRIX & rate,
const MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity)
{ rate = 1/elapsedTime_*(unfilteredQuantity - filteredQuantity); }
protected:
TimeFilterStep(){};
double elapsedTime_;
void update_filter(MATRIX & filteredQuantity,
const MATRIX & unfilteredQuantity,
MATRIX & unfilteredQuantitySum,
double tau,
double dt)
{
// this average and the next
if (elapsedTime_ == 0.0) { // a reset
elapsedTime_ = dt;
unfilteredQuantitySum = unfilteredQuantity*dt;
filteredQuantity = unfilteredQuantity;
}
else { // a running average
elapsedTime_ += dt;
unfilteredQuantitySum += unfilteredQuantity*dt;
filteredQuantity = unfilteredQuantitySum;
filteredQuantity /= elapsedTime_;
}
if (elapsedTime_ >= tau && tau > 0) {
elapsedTime_ = 0.0;
}
};
};
}
#endif