forked from lijiext/lammps
226 lines
6.1 KiB
Fortran
226 lines
6.1 KiB
Fortran
*> \brief \b DGETRF
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGETRF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetrf.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetrf.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetrf.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGETRF computes an LU factorization of a general M-by-N matrix A
|
|
*> using partial pivoting with row interchanges.
|
|
*>
|
|
*> The factorization has the form
|
|
*> A = P * L * U
|
|
*> where P is a permutation matrix, L is lower triangular with unit
|
|
*> diagonal elements (lower trapezoidal if m > n), and U is upper
|
|
*> triangular (upper trapezoidal if m < n).
|
|
*>
|
|
*> This is the right-looking Level 3 BLAS version of the algorithm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix to be factored.
|
|
*> On exit, the factors L and U from the factorization
|
|
*> A = P*L*U; the unit diagonal elements of L are not stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (min(M,N))
|
|
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
|
|
*> matrix was interchanged with row IPIV(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
|
|
*> has been completed, but the factor U is exactly
|
|
*> singular, and division by zero will occur if it is used
|
|
*> to solve a system of equations.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup doubleGEcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IINFO, J, JB, NB
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM, DGETRF2, DLASWP, DTRSM, XERBLA
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DGETRF', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Determine the block size for this environment.
|
|
*
|
|
NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )
|
|
IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
|
|
*
|
|
* Use unblocked code.
|
|
*
|
|
CALL DGETRF2( M, N, A, LDA, IPIV, INFO )
|
|
ELSE
|
|
*
|
|
* Use blocked code.
|
|
*
|
|
DO 20 J = 1, MIN( M, N ), NB
|
|
JB = MIN( MIN( M, N )-J+1, NB )
|
|
*
|
|
* Factor diagonal and subdiagonal blocks and test for exact
|
|
* singularity.
|
|
*
|
|
CALL DGETRF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
|
|
*
|
|
* Adjust INFO and the pivot indices.
|
|
*
|
|
IF( INFO.EQ.0 .AND. IINFO.GT.0 )
|
|
$ INFO = IINFO + J - 1
|
|
DO 10 I = J, MIN( M, J+JB-1 )
|
|
IPIV( I ) = J - 1 + IPIV( I )
|
|
10 CONTINUE
|
|
*
|
|
* Apply interchanges to columns 1:J-1.
|
|
*
|
|
CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
|
|
*
|
|
IF( J+JB.LE.N ) THEN
|
|
*
|
|
* Apply interchanges to columns J+JB:N.
|
|
*
|
|
CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
|
|
$ IPIV, 1 )
|
|
*
|
|
* Compute block row of U.
|
|
*
|
|
CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
|
|
$ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
|
|
$ LDA )
|
|
IF( J+JB.LE.M ) THEN
|
|
*
|
|
* Update trailing submatrix.
|
|
*
|
|
CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
|
|
$ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
|
|
$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
|
|
$ LDA )
|
|
END IF
|
|
END IF
|
|
20 CONTINUE
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of DGETRF
|
|
*
|
|
END
|