forked from lijiext/lammps
243 lines
6.5 KiB
Fortran
243 lines
6.5 KiB
Fortran
*> \brief \b ZTPTRI
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZTPTRI + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztptri.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztptri.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztptri.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIAG, UPLO
|
|
* INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 AP( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZTPTRI computes the inverse of a complex upper or lower triangular
|
|
*> matrix A stored in packed format.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': A is upper triangular;
|
|
*> = 'L': A is lower triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> = 'N': A is non-unit triangular;
|
|
*> = 'U': A is unit triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AP
|
|
*> \verbatim
|
|
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
|
|
*> On entry, the upper or lower triangular matrix A, stored
|
|
*> columnwise in a linear array. The j-th column of A is stored
|
|
*> in the array AP as follows:
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
|
|
*> See below for further details.
|
|
*> On exit, the (triangular) inverse of the original matrix, in
|
|
*> the same packed storage format.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
|
|
*> matrix is singular and its inverse can not be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> A triangular matrix A can be transferred to packed storage using one
|
|
*> of the following program segments:
|
|
*>
|
|
*> UPLO = 'U': UPLO = 'L':
|
|
*>
|
|
*> JC = 1 JC = 1
|
|
*> DO 2 J = 1, N DO 2 J = 1, N
|
|
*> DO 1 I = 1, J DO 1 I = J, N
|
|
*> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
|
|
*> 1 CONTINUE 1 CONTINUE
|
|
*> JC = JC + J JC = JC + N - J + 1
|
|
*> 2 CONTINUE 2 CONTINUE
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, UPLO
|
|
INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 AP( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE, ZERO
|
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
|
|
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOUNIT, UPPER
|
|
INTEGER J, JC, JCLAST, JJ
|
|
COMPLEX*16 AJJ
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZSCAL, ZTPMV
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
NOUNIT = LSAME( DIAG, 'N' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZTPTRI', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Check for singularity if non-unit.
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
IF( UPPER ) THEN
|
|
JJ = 0
|
|
DO 10 INFO = 1, N
|
|
JJ = JJ + INFO
|
|
IF( AP( JJ ).EQ.ZERO )
|
|
$ RETURN
|
|
10 CONTINUE
|
|
ELSE
|
|
JJ = 1
|
|
DO 20 INFO = 1, N
|
|
IF( AP( JJ ).EQ.ZERO )
|
|
$ RETURN
|
|
JJ = JJ + N - INFO + 1
|
|
20 CONTINUE
|
|
END IF
|
|
INFO = 0
|
|
END IF
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute inverse of upper triangular matrix.
|
|
*
|
|
JC = 1
|
|
DO 30 J = 1, N
|
|
IF( NOUNIT ) THEN
|
|
AP( JC+J-1 ) = ONE / AP( JC+J-1 )
|
|
AJJ = -AP( JC+J-1 )
|
|
ELSE
|
|
AJJ = -ONE
|
|
END IF
|
|
*
|
|
* Compute elements 1:j-1 of j-th column.
|
|
*
|
|
CALL ZTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
|
|
$ AP( JC ), 1 )
|
|
CALL ZSCAL( J-1, AJJ, AP( JC ), 1 )
|
|
JC = JC + J
|
|
30 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* Compute inverse of lower triangular matrix.
|
|
*
|
|
JC = N*( N+1 ) / 2
|
|
DO 40 J = N, 1, -1
|
|
IF( NOUNIT ) THEN
|
|
AP( JC ) = ONE / AP( JC )
|
|
AJJ = -AP( JC )
|
|
ELSE
|
|
AJJ = -ONE
|
|
END IF
|
|
IF( J.LT.N ) THEN
|
|
*
|
|
* Compute elements j+1:n of j-th column.
|
|
*
|
|
CALL ZTPMV( 'Lower', 'No transpose', DIAG, N-J,
|
|
$ AP( JCLAST ), AP( JC+1 ), 1 )
|
|
CALL ZSCAL( N-J, AJJ, AP( JC+1 ), 1 )
|
|
END IF
|
|
JCLAST = JC
|
|
JC = JC - N + J - 2
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZTPTRI
|
|
*
|
|
END
|